Regularity theory for mean curvature flow
Author(s)
Bibliographic Information
Regularity theory for mean curvature flow
(Progress in nonlinear differential equations and their applications / editor, Haim Brezis, v. 57)
Birkhäuser, c2004
- : hardcover
- : softcover
Available at 28 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Science and Technology Library, Kyushu University
: hardcover023212004000433,
: softcover023212004008315 -
Library, Research Institute for Mathematical Sciences, Kyoto University数研
: hardcoverECK||7||104005215
Note
Includes bibliographical references and index
Description and Table of Contents
Description
* Devoted to the motion of surfaces for which the normal velocity at every point is given by the mean curvature at that point; this geometric heat flow process is called mean curvature flow.
* Mean curvature flow and related geometric evolution equations are important tools in mathematics and mathematical physics.
Table of Contents
1 Introduction.- 2 Special Solutions and Global Behaviour.- 3 Local Estimates via the Maximum Principle.- 4 Integral Estimates and Monotonicity Formulas.- 5 Regularity Theory at the First Singular Time.- A Geometry of Hypersurfaces.- B Derivation of the Evolution Equations.- C Background on Geometric Measure Theory.- D Local Results for Minimal Hypersurfaces.- E Remarks on Brakke!-s Clearing Out Lemma.- F Local Monotonicity in Closed Form.
by "Nielsen BookData"