Computational discrete mathematics : combinatorics and graph theory with Mathematica
著者
書誌事項
Computational discrete mathematics : combinatorics and graph theory with Mathematica
Cambridge University Press, 2003
大学図書館所蔵 全37件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 448-457) and index
HTTP:URL=http://www.loc.gov/catdir/toc/cam031/2002041688.html Information=Table of contents
HTTP:URL=http://www.loc.gov/catdir/description/cam031/2002041688.html Information=Publisher description
内容説明・目次
内容説明
This book was first published in 2003. Combinatorica, an extension to the popular computer algebra system Mathematica (R), is the most comprehensive software available for teaching and research applications of discrete mathematics, particularly combinatorics and graph theory. This book is the definitive reference/user's guide to Combinatorica, with examples of all 450 Combinatorica functions in action, along with the associated mathematical and algorithmic theory. The authors cover classical and advanced topics on the most important combinatorial objects: permutations, subsets, partitions, and Young tableaux, as well as all important areas of graph theory: graph construction operations, invariants, embeddings, and algorithmic graph theory. In addition to being a research tool, Combinatorica makes discrete mathematics accessible in new and exciting ways to a wide variety of people, by encouraging computational experimentation and visualization. The book contains no formal proofs, but enough discussion to understand and appreciate all the algorithms and theorems it contains.
目次
- 1. Combinatorica: an explorer's guide
- 2. Permutations and combinations
- 3. Algebraic combinatorics
- 4. Partitions, compositions and Young tableaux
- 5. Graph representation
- 6. Generating graphs
- 7. Properties of graphs
- 8. Algorithmic graph theory.
「Nielsen BookData」 より