Random graphs for statistical pattern recognition
著者
書誌事項
Random graphs for statistical pattern recognition
(Wiley series in probability and mathematical statistics)
Wiley-Interscience, c2004
大学図書館所蔵 件 / 全34件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 213-227) and indexes
内容説明・目次
内容説明
A timely convergence of two widely used disciplines Random Graphs for Statistical Pattern Recognition is the first book to address the topic of random graphs as it applies to statistical pattern recognition. Both topics are of vital interest to researchers in various mathematical and statistical fields and have never before been treated together in one book. The use of data random graphs in pattern recognition in clustering and classification is discussed, and the applications for both disciplines are enhanced with new tools for the statistical pattern recognition community. New and interesting applications for random graph users are also introduced.
This important addition to statistical literature features:
Information that previously has been available only through scattered journal articles
Practical tools and techniques for a wide range of real-world applications
New perspectives on the relationship between pattern recognition and computational geometry
Numerous experimental problems to encourage practical applications
With its comprehensive coverage of two timely fields, enhanced with many references and real-world examples, Random Graphs for Statistical Pattern Recognition is a valuable resource for industry professionals and students alike.
目次
Preface. Acknowledgments.
1. Preliminaries.
1.1 Graphs and Digraphs.
1.2 Statistical Pattern Recognition.
1.3 Statistical Issues.
1.4 Applications.
1.5 Further Reading.
2. Computational Geometry.
2.1 Introduction.
2.2 Voronoi Cells and Delaunay Triangularization.
2.3 Alpha Hulls.
2.4 Minimum Spanning Trees.
2.5 Further Reading.
3. Neighborhood Graphs.
3.1 Introduction.
3.2 Nearest-Neighbor Graphs.
3.3 k-Nearest Neighbor Graphs.
3.4 Relative Neighborhood Graphs.
3.5 Gabriel Graphs.
3.6 Application: Nearest Neighbor Prototypes.
3.7 Sphere of Influence Graphs.
3.8 Other Relatives.
3.9 Asymptotics.
3.10 Further Reading.
4. Class Cover Catch Digraphs.
4.1 Catch Digraphs.
4.2 Class Covers.
4.3 Dominating Sets.
4.4 Distributional Results for Cn,m-graphs.
4.5 Characterizations.
4.6 Scale Dimension.
4.7 ( , ) Graphs
4.8 CCCD Classification.
4.9 Homogeneous CCCDs.
4.10 Vector Quantization.
4.11 Random Walk Version.
4.12 Further Reading.
5. Cluster Catch Digraphs.
5.1 Basic Definitions.
5.2 Dominating Sets.
5.3 Connected Components.
5.4 Variable Metric Clustering.
6. Computational Methods.
6.1 Introduction.
6.2 Kd-Trees.
6.3 Class Cover Catch Digraphs.
6.4 Cluster Catch Digraphs.
6.5 Voroni Regions and Delaunay Triangularizations.
6.6 Further Reading.
References.
Author Index.
Subject Index.
「Nielsen BookData」 より