Equivariant, almost-arborescent representations of open simply-connected 3-manifolds : a finiteness result
著者
書誌事項
Equivariant, almost-arborescent representations of open simply-connected 3-manifolds : a finiteness result
(Memoirs of the American Mathematical Society, no. 800)
American Mathematical Society, 2004
大学図書館所蔵 全15件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Volume 169, number 800 (first of 4 numbers)"
Bibliography: p. 87-88
Includes index
内容説明・目次
内容説明
When one extends the (almost) collapsible pseudo-spine representation theorem for homotopy $3$-spheres [Po3] to open simply connected $3$-manifolds $V^3$, new phenomena appear: at the source of the representation, the set of double points is, generally speaking, no longer closed. We show that at the cost of replacing $V^3$ by $V_h^3 = \{V^3$ with very many holes $\}$, we can always find representations $X^2 \stackrel {f} {\rightarrow} V^3$ with $X^2$ locally finite and almost-arborescent, with $\Psi (f)=\Phi (f)$, with the open regular neighbourhood (the only one which is well-defined here) Nbd$(fX^2)=V^3_h$ and such that on any precompact tight transversal to the set of double lines, we have only finitely many limit points (of the set of double points).Moreover, if $V^3$ is the universal covering space of a closed $3$-manifold, $V^3=\widetilde M^3$, then we can find an $X^2$ with a free $\pi_1M^3$ action and having the equivariance property $f(gx)=gf(x)$, $g\in \pi_1M^3$. Having simultaneously all these properties for $X^2\stackrel{f} {\rightarrow} \widetilde M^3$ is one of the steps in the first author's program for proving that $\pi_1^\infty \widetilde M^3=[UNK]0$, [Po11, Po12]. Achieving equivariance is far from being straightforward, since $X^2$ is gotten starting from a tree of fundamental domains on which $\pi_1M^3$ cannot, generally speaking, act freely. So, in this paper we have both a representation theorem for general ($\pi_1=0$) $V^3$'s and a harder equivariant representation theorem for $\widetilde M^3$ (with $gfX^2=fX^2, \, g\in\pi_1M^3$), the proof of which is not a specialization of the first, 'easier' result.But, finiteness is achieved in both contexts. In a certain sense, this finiteness is a best possible result, since if the set of limit points in question is $\emptyset$ (i.e. if the set of double points is closed), then $\pi_1^\infty V_h^3$ (which is always equal to $\pi_1^\infty V^3$) is zero. In [PoTa2] it was also shown that when we insist on representing $V^3$ itself, rather than $V_h^3$, and if $V^3$ is wild ($\pi_1^\infty\not =0$), then the transversal structure of the set of double lines can exhibit chaotic dynamical behavior. Our finiteness theorem avoids chaos at the cost of a lot of redundancy (the same double point $(x, y)$ can be reached in many distinct ways starting from the singularities).
目次
Introduction The case $V^3=\widetilde M^3$ of Theorem I and Theorem II The accumulation pattern of the double point $M_2(f)\subset X^2$ Arbitrary open simply-connected 3-manifold Bibliography.
「Nielsen BookData」 より