Representation theory of algebraic groups and quantum groups
著者
書誌事項
Representation theory of algebraic groups and quantum groups
(Advanced studies in pure mathematics, 40)
Mathematical Society of Japan, c2004
大学図書館所蔵 全49件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
Proceedings of the conference held at Sophia University in Tokyo, Aug. 1-10, 2001, as the 10th International Research Institute of the Mathematical Society of Japan (MSJ-IRI)
内容説明・目次
内容説明
This book is a collection of research and survey papers written by speakers at the Mathematical Society of Japan's 10th International Conference. It presents a comprehensive overview of developments in representation theory of algebraic groups and quantum groups. Particularly noteworthy are papers containing remarkable results concerning Lusztig's conjecture on cells in affine Weyl groups. The following topics were discussed: cells in affine Weyl groups, tilting modules, tensor categories attached to cells in affine Weyl groups, representations of algebraic groups in positive characteristic, representations of Hecke algebras, Ariki-Koike and cyclotomic $q$-Schur algebras, cellular algebras and diagram algebras, Gelfand-Graev representations of finite reductive groups, Green functions associated to complex reflection groups, induction theorem for Springer representations, representations of Lie algebras in positive characteristic, representations of quantum affine algebras, extremal weight modules, crystal bases, tropical Robinson-Schensted-Knuth correspondence and more.
The material is suitable for graduate students and research mathematicians interested in representation theory of algebraic groups, Hecke algebras, quantum groups, and combinatorial theory. Information for our distributors: Published for the Mathematical Society of Japan by Kinokuniya, Tokyo, and distributed worldwide, except in Japan, by the AMS. All commercial channel discounts apply.
目次
Cells in affine Weyl groups and tilting modules by H. H. Anderson Heche algebras with a finite number of indecomposable modules by S. Ariki and A. Mathas Algebraic construction of contragradient quasi-Verma modules in positive characteristic by S. Arkihopov On tensor categories attached to cells in affine Weyl groups by R. Bezrukavnikov Appendix: Braiding compatibilities by D. Gaitsgory On tensor categories attached to cells in affine Weyl groups II by R. Bezrukavnikov and V. Ostrik Zeta functions and functional equations associated with the components of the Gelfand-Graev representations of a finite reductive group by C. W. Curtis and K.-i. Shinoda Cellular algebras and diagram algebras in representation theory by J. J. Graham and G. I. Lehrer Representations of Lie algebras in positive characteristic by J. C. Jantzen Quantum affine algebras and crystal bases by S.-J. Kang An induction theorem for Springer's representations by G. Lusztig The representation theory of the Ariki-Koike and cyclotomic $q$-Schur algebras by A. Mathas Crystal bases and diagram automorphisms by S. Naito and D. Sagaki Extremal weight modules of quantum affine algebras by H. Nakajima Tropical Robinson-Schensted-Knuth correspondence and birational Weyl group actions by M. Noumi and Y. Yamada Green functions attached to limit symbols by T. Shoji Cells for a Hecke algebra representation by T. A. Springer On the characterization of the set $\mathcal{D}_1$ of the affine Weyl group of type $\tilde{A}_n$ by N. Xi.
「Nielsen BookData」 より