The conjugacy problem and Higman embeddings
著者
書誌事項
The conjugacy problem and Higman embeddings
(Memoirs of the American Mathematical Society, no. 804)
American Mathematical Society, 2004
大学図書館所蔵 件 / 全15件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"Volume 170, number 804 (first of 4 numbers)"
Includes bibliographical references (p. 128-130) and index
内容説明・目次
内容説明
For every finitely generated recursively presented group $\mathcal G$ we construct a finitely presented group $\mathcal H$ containing $\mathcal G$ such that $\mathcal G$ is (Frattini) embedded into $\mathcal H$ and the group $\mathcal H$ has solvable conjugacy problem if and only if $\mathcal G$ has solvable conjugacy problem. Moreover $\mathcal G$ and $\mathcal H$ have the same r.e. Turing degrees of the conjugacy problem. This solves a problem by D. Collins.
目次
Introduction List of relations The first properties of ${\mathcal H}$ The group ${\mathcal H}_2$ The word problem in ${\mathcal H}_1$ Some special diagrams Computations of ${\mathcal S} \cup {\bar{\mathcal S}}$ Spirals Rolls Arrangement of hubs The end of the proof References Subject index.
「Nielsen BookData」 より