K3 projective models in scrolls
著者
書誌事項
K3 projective models in scrolls
(Lecture notes in mathematics, 1842)
Springer, c2004
大学図書館所蔵 全62件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [159]-162) and index
内容説明・目次
内容説明
The exposition studies projective models of K3 surfaces whose hyperplane sections are non-Clifford general curves. These models are contained in rational normal scrolls. The exposition supplements standard descriptions of models of general K3 surfaces in projective spaces of low dimension, and leads to a classification of K3 surfaces in projective spaces of dimension at most 10. The authors bring further the ideas in Saint-Donat's classical article from 1974, lifting results from canonical curves to K3 surfaces and incorporating much of the Brill-Noether theory of curves and theory of syzygies developed in the mean time.
目次
Introduction.- Surfaces in scrolls.- The Clifford index of smooth curves in |L| and the definition of the scrolls T(c, D, {D_{\lamda}}).- Two existence theorems.- The singular locus of the surface S and the scroll T.- Postponed proofs.- Projective models in smooth scrolls.- Projective models in singular scrolls.- More on projective models in smooth scrolls of K3 surfaces of low Clifford-indices.- BN general and Clifford general K3 surfaces.- Projective models of K3 surfaces of low genus.- Some applications and open questions.- References.- Index.
「Nielsen BookData」 より