Statistical estimation of epidemiological risk
著者
書誌事項
Statistical estimation of epidemiological risk
(Statistics in practice)
Wiley, 2004
大学図書館所蔵 全10件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Statistical Estimation of Epidemiological Risk provides coverage of the most important epidemiological indices, and includes recent developments in the field. A useful reference source for biostatisticians and epidemiologists working in disease prevention, as the chapters are self-contained and feature numerous real examples. It has been written at a level suitable for public health professionals with a limited knowledge of statistics. Other key features include:
Provides comprehensive coverage of the key epidemiological indices.
Includes coverage of various sampling methods, and pointers to where each should be used.
Includes up-to-date references and recent developments in the field.
Features many real examples, emphasising the practical nature of the book.
Each chapter is self-contained, allowing the book to be used as a useful reference source.
Includes exercises, enabling use as a course text.
目次
About the author. Preface.
1 Population Proportion or Prevalence.
1.1 Binomial sampling.
1.2 Cluster sampling.
1.3 Inverse sampling.
Exercises.
References.
2 Risk Difference.
2.1 Independent binomial sampling.
2.2 A series of independent binomial sampling procedures.
2.2.1 Summary interval estimators.
2.2.2 Test for the homogeneity of risk difference.
2.3 Independent cluster sampling.
2.4 Paired-sample data.
2.5 Independent negative binomial sampling (inverse sampling).
2.6 Independent poisson sampling.
2.7 Stratified poisson sampling.
Exercises.
References.
3 Relative Difference.
3.1 Independent binomial sampling.
3.2 A series of independent binomial sampling procedures.
3.2.1 Asymptotic interval estimators.
3.2.2 Test for the homogeneity of relative difference.
3.3 Independent cluster sampling.
3.4 Paired-sample data.
3.5 Independent inverse sampling.
Exercises.
References.
4 Relative Risk.
4.1 Independent binomial sampling.
4.2 A series of independent binomial sampling procedures.
4.2.1 Asymptotic interval estimators.
4.2.2 Test for the homogeneity of risk ratio.
4.3 Independent cluster sampling.
4.4 Paired-sample data.
4.5 Independent inverse sampling.
4.5.1 Uniformly minimum variance unbiased estimator of relative risk.
4.5.2 Interval estimators of relative risk.
4.6 Independent poisson sampling.
4.7 Stratified poisson sampling.
Exercises.
References.
5 Odds Ratio.
5.1 Independent binomial sampling.
5.1.1 Asymptotic interval estimators.
5.1.2 Exact confidence interval.
5.2 A series of independent binomial sampling procedures.
5.2.1 Asymptotic interval estimators.
5.2.2 Exact confidence interval.
5.2.3 Test for homogeneity of the odds ratio.
5.3 Independent cluster sampling.
5.4 One-to-one matched sampling.
5.5 Logistic modeling.
5.5.1 Estimation under multinomial or independent binomial sampling.
5.5.2 Estimation in the case of paired-sample data.
5.6 Independent inverse sampling.
5.7 Negative multinomial sampling for paired-sample data.
Exercises.
References.
6 Generalized Odds Ratio.
6.1 Independent multinomial sampling.
6.2 Data with repeated measurements (or under cluster sampling).
6.3 Paired-sample data.
6.4 Mixed negative multinomial and multinomial sampling.
Exercises.
References.
7 Attributable Risk.
7.1 Study designs with no confounders.
7.1.1 Cross-sectional sampling.
7.1.2 Case-control studies.
7.2 Study designs with confounders.
7.2.1 Cross-sectional sampling.
7.2.2 Case-control studies.
7.3 Case-control studies with matched pairs.
7.4 Multiple levels of exposure in case-control studies.
7.5 Logistic modeling in case-control studies.
7.5.1 Logistic model containing only the exposure variables of interest.
7.5.2 Logistic regression model containing both exposure and confounding variables.
7.6 Case-control studies under inverse sampling.
Exercises.
References.
8 Number Needed to Treat.
8.1 Independent binomial sampling.
8.2 A series of independent binomial sampling procedures.
8.3 Independent cluster sampling.
8.4 Paired-sample data.
Exercises.
References.
Appendix Maximum Likelihood Estimator and Large-Sample Theory.
A.1: The maximum likelihood estimator, Wald's test, the score test, and the asymptotic likelihood ratio test.
A.2: The delta method and its applications.
References.
Answers to Selected Exercises.
Index.
「Nielsen BookData」 より