Potential theory and right processes
Author(s)
Bibliographic Information
Potential theory and right processes
(Mathematics and its applications, v. 572)
Kluwer Academic, c2004
- : hb
- : e-book
Available at 16 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
: hbBEZ||3||104027283
Note
Includes bibliographical references (p. 355-364) and index
Description and Table of Contents
Description
The developmentsin the recent yearsof the potential theoryemphasized a classof functions larger than that of excessive functions (i.e. the positive superharmonic functionsfromtheclassicalpotentialtheoryassociatedwiththeLaplaceoperator), namely the strongly supermedian functions. It turns out that a positive Borel function will be strongly supermedian if and only if it is the in?mum of all its excessive majorants. Apparently, these functions have been introduced by J.F. Mertens and then they have been studied mainly by P.A. Meyer, G. Mokobodzki, D. Feyel and recently by P.J. Fitzsimmons and R.K. Getoor. The aimofthis bookisamongothersto developa potential theoryappropriate to this new class of functions. Although our methods are analytical, we present also the probabilistic counterparts from the Markov processes theory. The natural frame in which this theory is settled is given by a sub-Markovian resolvent of kernels on a Radon measurable space. After a possible extension of the space, such a resolvent becomes that one associated with a right process on a Radon topological space, not necessary locally compact and without existing a reference measure.
Intimately related to the excessive functions we present certain basic tools of the theory: the Ray topology and compacti?cation, the ?ne carrier and the reduction operation on measurable sets. We examine di?erent types of negligible sets with respect to a ?nite measure ?:the ?-polar, ?-semipolar and ?-mince sets. We take advantage of the cone of potentials structure for both excessive functions and measures.
Table of Contents
Introduction.
1: Excessive Functions. 1.1. Sub-Markovian resolvent of kernels. 1.2. Basics on excessive functions. 1.3. Fine topology. 1.4. Excessive measures. 1.5. Ray topology and compactification. 1.6. The reduction operation and the associated capacities. 1.7. Polar and semipolar sets. Nearly measurable functions. 1.8. Probabilistic interpretations: Sub-Markovian resolvents and right processes.
2: Cones of Potentials and H Cones. 2.1. Basics on cones of potentials and H-cones. 2.2. sigma-Balayages on cones of potentials. 2.3. Balayages on H-cones. 2.4. Quasi bounded, subtractive and regular elements of a cone of potentials.
3: Fine Potential Theoretical Techniques. 3.1. Cones of potentials associated with a sub-Markovian resolvent. 3.2. Regular excessive functions, fine carrier and semipolarity. 3.3. Representation of balayages on excessive measures. 3.4. Quasi bounded, regular and subtractive excessive measures. 3.5. Tightness for sub-Markovian resolvents. 3.6. Localization in excessive functions and excessive measures. 3.7. Probabilistic interpretations: Continuous additive functionals and standardness.
4: Strongly Supermedian Functions and Kernels. 4.1. Supermedian functionals. 4.2. Supermedian lambda-quasi kernels. 4.3. Strongly supermedian functions. 4.4. Fine densities. 4.5. Probabilistic interpretations: Homogeneous random measures.
5: Subordinate Resolvents. 5.1. Weak subordination operators. 5.2. Inverse subordination. 5.3. Probabilistic interpretations: Multiplicative functionals.
6: Revuz Correspondence. 6.1. Revuz measures. 6.2. Hypothesis (i) of Hunt. 6.3. Smooth measures and sub-Markovian resolvents. 6.4. Measure perturbation of sub-Markovian resolvents. 6.5. Probabilistic interpretations: Positive left additive functionals.
7: Resolvents under Weak Duality Hypothesis. 7.1. Weak duality hypothesis. 7.2. Natural potential kernels and the Revuz correspondence. 7.3. Smooth and cosmooth measures. 7.4. Subordinate resolvents in weak duality. 7.5. Semi-Dirichlet forms. 7.6. Weak duality induced by a semi-Dirichlet form. 7.7. Probabilistic interpretations: Multiplicative functionals in weak duality.
A. Appendix: A.1. Complements on measure theory, kernels, Choquet boundary and capacity. A.2. Complements on right processes. A.3. Cones of potentials and H-cones. A.4. Basics on coercive closed bilinear forms.
Notes. Bibliography. Index.
by "Nielsen BookData"