Knots and links
著者
書誌事項
Knots and links
Cambridge University Press, 2004
- : hbk.
- : pbk.
大学図書館所蔵 件 / 全31件
-
: pbk.415.7//C93//151115100215076,15100215084,15100215092,15100215100,15100215118
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 308-322) and index
内容説明・目次
内容説明
Knots and links are studied by mathematicians, and are also finding increasing application in chemistry and biology. Many naturally occurring questions are often simple to state, yet finding the answers may require ideas from the forefront of research. This readable and richly illustrated 2004 book explores selected topics in depth in a way that makes contemporary mathematics accessible to an undergraduate audience. It can be used for upper-division courses, and assumes only knowledge of basic algebra and elementary topology. Together with standard topics, the book explains: polygonal and smooth presentations; the surgery equivalence of surfaces; the behaviour of invariants under factorisation and the satellite construction; the arithmetic of Conway's rational tangles; arc presentations. Alongside the systematic development of the main theory, there are discussion sections that cover historical aspects, motivation, possible extensions, and applications. Many examples and exercises are included to show both the power and limitations of the techniques developed.
目次
- Preface
- 1. Introduction
- 2. A topologist's toolkit
- 3. Link diagrams
- 4. Constructions and decompositions of links
- 5. Spanning surfaces and genus
- 6. Matrix invariants
- 7. The Alexander-Conway polynomial
- 8. Rational tangles
- 9. More polynomials
- 10. Closed braids and arc presentations
- Appendix A. Knot diagrams
- Appendix B. Numerical invariants
- Appendix C. Properties
- Appendix D. Polynomials
- Appendix E. Polygon coordinates
- Appendix F. Family properties
- Bibliography
- Index.
「Nielsen BookData」 より