Real and stochastic analysis : new perspectives
著者
書誌事項
Real and stochastic analysis : new perspectives
(Trends in mathematics)
Birkhäuser, c2004
大学図書館所蔵 全16件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
As in the case of the two previous volumes published in 1986 and 1997, the purpose of this monograph is to focus the interplay between real (functional) analysis and stochastic analysis show their mutual benefits and advance the subjects. The presentation of each article, given as a chapter, is in a research-expository style covering the respective topics in depth. In fact, most of the details are included so that each work is essentially self contained and thus will be of use both for advanced graduate students and other researchers interested in the areas considered. Moreover, numerous new problems for future research are suggested in each chapter. The presented articles contain a substantial number of new results as well as unified and simplified accounts of previously known ones. A large part of the material cov ered is on stochastic differential equations on various structures, together with some applications. Although Brownian motion plays a key role, (semi-) martingale theory is important for a considerable extent. Moreover, noncommutative analysis and probabil ity have a prominent role in some chapters, with new ideas and results. A more detailed outline of each of the articles appears in the introduction and outline to assist readers in selecting and starting their work. All chapters have been reviewed.
目次
and Outline.- References.- Stochastic Differential Equations and Hypoelliptic Operators.- 1 Introduction.- 2 Integration by parts and the regularity of induced measures.- 3 A Hörmander theorem for infinitely degenerate operators.- 4 A study of a class of degenerate functional stochastic differential equations.- 5 Some open problems.- References.- Curved Wiener Space Analysis.- 1 Introduction.- 2 Manifold primer.- 3 Riemannian geometry primer.- 4 Flows and Cartan's development map.- 5 Stochastic calculus on manifolds.- 6 Heat kernel derivative formula.- 7 Calculus on W(M).- 8 Malliavin's methods for hypoelliptic operators.- 9 Appendix: Martingale and SDE estimates.- References.- Noncommutative Probability and Applications.- 1 Introduction.- 2 Traditional probability theory.- 3 Unsharp traditional probability theory.- 4 Sharp quantum probability.- 5 Unsharp quantum probability.- 6 Effects and observables.- 7 Statistical maps.- 8 Sequential products on Hilbert space.- 9 Quantum operations.- 10 Completely positive maps.- 11 Sequential effect algebras.- 12 Further SEA results.- References.- Advances and Applications of the Feynman Integral.- 1 Introduction.- 2 The operator valued Feynman integral.- 3 Evolution processes.- 4 The Feynman-Kac formula.- 5 Boundedness of processes.- 6 Path integrals on finite sets.- 7 The Dirac equation in one space dimension.- 8 Integration with respect to unbounded set functions.- 9 The Feynman integral with singular potentials.- 10 Quantum field theory.- References.- Stochastic Differential Equations Based on Lévy Processes and Stochastic Flows of Diffeomorphisms.- 1 Stochastic integrals for sernimartingales.- 2 Stochastic analysis of Lévy processes.- 3 Stochastic differential equation and stochastic flow.- 4 Appendix. Kolmogorov'scriterion for the continuity of random fields and the uniform convergence of random fields.- References.- Convolutions of Vector Fields-III: Amenability and Spectral Properties.- 1 Introduction.- 2 Elementary Aspects of Random Walks.- 3 Role of the Spectrum of Convolution Operators.- 4 Amenable Function Algebras and Groups.- 5 Spectra of Convolution Operators and Amenability.- 6 Beurling and Segal Algebras for Amenability.- References.
「Nielsen BookData」 より