Nonsmooth critical point theory and nonlinear boundary value problems
著者
書誌事項
Nonsmooth critical point theory and nonlinear boundary value problems
(Series in mathematical analysis and applications / edited by Ravi P. Agarwal and Donal O'Regan, v. 8)
Chapman & Hall/CRC, c2005
大学図書館所蔵 全6件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 735-761) and index
内容説明・目次
内容説明
Starting in the early 1980s, people using the tools of nonsmooth analysis developed some remarkable nonsmooth extensions of the existing critical point theory. Until now, however, no one had gathered these tools and results together into a unified, systematic survey of these advances.
This book fills that gap. It provides a complete presentation of nonsmooth critical point theory, then goes beyond it to study nonlinear second order boundary value problems. The authors do not limit their treatment to problems in variational form. They also examine in detail equations driven by the p-Laplacian, its generalizations, and their spectral properties, studying a wide variety of problems and illustrating the powerful tools of modern nonlinear analysis. The presentation includes many recent results, including some that were previously unpublished. Detailed appendices outline the fundamental mathematical tools used in the book, and a rich bibliography forms a guide to the relevant literature.
Most books addressing critical point theory deal only with smooth problems, linear or semilinear problems, or consider only variational methods or the tools of nonlinear operators. Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems offers a comprehensive treatment of the subject that is up-to-date, self-contained, and rich in methods for a wide variety of problems.
目次
Mathematical Background. Critical Point Theory. Ordinary Differential Equations. Elliptical Equations. Appendices: Set Theory and Topology. Measure Theory. Functional Analysis. Nonlinear Analysis.
「Nielsen BookData」 より