Physical chemistry of macromolecules : basic principles and issues

書誌事項

Physical chemistry of macromolecules : basic principles and issues

S.F. Sun

John Wiley & Sons, c2004

2nd ed

  • : hard : acid-free paper

電子リソースにアクセスする 全1

大学図書館所蔵 件 / 6

この図書・雑誌をさがす

注記

"A Wiley-Interscience publication."

Includes bibliographical references and indexes

内容説明・目次

内容説明

Integrating coverage of polymers and biological macromolecules into a single text, Physical Chemistry of Macromolecules is carefully structured to provide a clear and consistent resource for beginners and professionals alike. The basic knowledge of both biophysical and physical polymer chemistry is covered, along with important terms, basic structural properties and relationships. This book includes end of chapter problems and references, and also: Enables users to improve basic knowledge of biophysical chemistry and physical polymer chemistry. Explores fully the principles of macromolecular chemistry, methods for determining molecular weight and configuration of molecules, the structure of macromolecules, and their separations.

目次

Preface to the Second Edition xv Preface to the First Edition xix 1 Introduction 1 1.1 Colloids 1 1.2 Macromolecules 3 1.2.1 Synthetic Polymers 4 1.2.2 Biological Polymers 7 1.3 Macromolecular Science 17 References 17 2 Syntheses of Macromolecular Compounds 19 2.1 Radical Polymerization 19 2.1.1 Complications 21 2.1.2 Methods of Free-Radical Polymerization 23 2.1.3 Some Well-Known Overall Reactions of Addition Polymers 23 2.2 Ionic Polymerization 25 2.2.1 Anionic Polymerization 25 2.2.2 Cationic Polymerization 27 2.2.3 Living Polymers 27 2.3 Coordination Polymerization 30 2.4 Stepwise Polymerization 32 2.5 Kinetics of the Syntheses of Polymers 33 2.5.1 Condensation Reactions 34 2.5.2 Chain Reactions 35 2.6 Polypeptide Synthesis 40 2.6.1 Synthesis of Insulin 43 2.6.2 Synthesis of Ribonucleus 48 2.7 DNA Synthesis 48 References 50 Problems 50 3 Distribution of Molecular Weight 52 3.1 Review of Mathematical Statistics 53 3.1.1 Binomial Distribution 53 3.1.2 Poisson Distribution 54 3.1.3 Gaussian Distribution 55 3.2 One-Parameter Equation 56 3.2.1 Condensation Polymers 57 3.2.2 Addition Polymers 58 3.3 Two-Parameter Equations 59 3.3.1 Normal Distribution 59 3.3.2 Logarithm Normal Distribution 60 3.4 Types of Molecular Weight 61 3.5 Experimental Methods for Determining Molecular Weight and Molecular Weight Distribution 64 References 65 Problems 65 4 Macromolecular Thermodynamics 67 4.1 Review of Thermodynamics 68 4.2 S of Mixing: Flory Theory 71 4.3 H of Mixing 75 4.3.1 Cohesive Energy Density 76 4.3.2 Contact Energy (First-Neighbor Interaction or Energy Due to Contact) 79 4.4 G of Mixing 81 4.5 Partial Molar Quantities 81 4.5.1 Partial Specific Volume 82 4.5.2 Chemical Potential 83 4.6 Thermodynamics of Dilute Polymer Solutions 84 4.6.1 Vapor Pressure 87 4.6.2 Phase Equilibrium 89 Appendix: Thermodynamics and Critical Phenomena 91 References 92 Problems 93 5 Chain Configurations 96 5.1 Preliminary Descriptions of a Polymer Chain 97 5.2 Random Walk and the Markov Process 98 5.2.1 Random Walk 99 5.2.2 Markov Chain 101 5.3 Random-Flight Chains 103 5.4 Wormlike Chains 105 5.5 Flory's Mean-Field Theory 106 5.6 Perturbation Theory 107 5.6.1 First-Order Perturbation Theory 108 5.6.2 Cluster Expansion Method 108 5.7 Chain Crossover and Chain Entanglement 109 5.7.1 Concentration Effect 109 5.7.2 Temperature Effect 114 5.7.3 Tube Theory (Reptation Theory) 116 5.7.4 Images of Individual Polymer Chains 118 5.8 Scaling and Universality 119 Appendix A Scaling Concepts 120 Appendix B Correlation Function 121 References 123 Problems 124 6 Liquid Crystals 127 6.1 Mesogens 128 6.2 Polymeric Liquid Crystals 130 6.2.1 Low-Molecular Weight Liquid Crystals 131 6.2.2 Main-Chain Liquid-Crystalline Polymers 132 6.2.3 Side-Chain Liquid-Crystalline Polymers 132 6.2.4 Segmented-Chain Liquid-Crystalline Polymers 133 6.3 Shapes of Mesogens 133 6.4 Liquid-Crystal Phases 134 6.4.1 Mesophases in General 134 6.4.2 Nematic Phase 135 6.4.3 Smectic Phase 135 6.4.3.1 Smectic A and C 136 6.4.4 Compounds Representing Some Mesophases 136 6.4.5 Shape and Phase 137 6.4.6 Decreasing Order and H of Phase Transition 138 6.5 Thermotropic and Lyotropic Liquid Crystals 138 6.6 Kerr Effect 140 6.7 Theories of Liquid-Crystalline Ordering 141 6.7.1 Rigid-Rod Model 141 6.7.2 Lattice Model 142 6.7.3 De Genne's Fluctuation Theory 144 6.8 Current Industrial Applications of Liquid Crystals 145 6.8.1 Liquid Crystals Displays 146 6.8.2 Electronic Devices 147 References 149 7 Rubber Elasticity 150 7.1 Rubber and Rubberlike Materials 150 7.2 Network Structure 151 7.3 Natural Rubber and Synthetic Rubber 152 7.4 Thermodynamics of Rubber 154 7.5 Statistical Theory of Rubber Elasticity 158 7.6 Gels 162 References 163 Problems 164 8 Viscosity and Viscoelasticity 165 8.1 Viscosity 165 8.1.1 Capillary Viscometers 166 8.1.2 Intrinsic Viscosity 170 8.1.3 Treatment of Intrinsic Viscosity Data 172 8.1.4 Stokes' Law 176 8.1.5 Theories in Relation to Intrinsic Viscosity of Flexible Chains 176 8.1.6 Chain Entanglement 179 8.1.7 Biological Polymers (Rigid Polymers Inflexible Chains) 181 8.2 Viscoelasticity 184 8.2.1 Rouse Theory 187 8.2.2 Zimm Theory 190 References 192 Problems 193 9 Osmotic Pressure 198 9.1 Osmometers 199 9.2 Determination of Molecular Weight and Second Virial Coefficient 199 9.3 Theories of Osmotic Pressure and Osmotic Second Virial Coefficient 202 9.3.1 McMillan-Mayer Theory 203 9.3.2 Flory Theory 204 9.3.3 Flory-Krigbaum Theory 205 9.3.4 Kurata-Yamakawa Theory 207 9.3.5 des Cloizeaux-de Gennes Scaling Theory 209 9.3.6 Scatchard's Equation for Macro Ions 213 Appendix A Ensembles 215 Appendix B Partition Functions 215 Appendix C Mean-Field Theory and Renormalization Group Theory 216 Appendix D Lagrangian Theory 217 Appendix E Green's Function 217 References 218 Problems 218 10 Diffusion 223 10.1 Translational Diffusion 223 10.1.1 Fick's First and Second Laws 223 10.1.2 Solution to Continuity Equation 224 10.2 Physical Interpretation of Diffusion: Einstein's Equation of Diffusion 226 10.3 Size Shape and Molecular Weight Determinations 229 10.3.1 Size 229 10.3.2 Shape 230 10.3.3 Molecular Weight 231 10.4 Concentration Dependence of Diffusion Coefficient 231 10.5 Scaling Relation for Translational Diffusion Coefficient 233 10.6 Measurements of Translational Diffusion Coefficient 234 10.6.1 Measurement Based on Fick's First Law 234 10.6.2 Measurement Based on Fick's Second Law 235 10.7 Rotational Diffusion 237 10.7.1 Flow Birefringence 239 10.7.2 Fluorescence Depolarization 239 References 240 Problems 240 11 Sedimentation 243 11.1 Apparatus 244 11.2 Sedimentation Velocity 246 11.2.1 Measurement of Sedimentation Coefficients: Moving-Boundary Method 246 11.2.2 Svedberg Equation 249 11.2.3 Application of Sedimentation Coefficient 249 11.3 Sedimentation Equilibrium 250 11.3.1 Archibald Method 251 11.3.2 Van Holde-Baldwin (Low-Speed) Method 254 11.3.3 Yphantis (High-Speed) Method 256 11.3.4 Absorption System 258 11.4 Density Gradient Sedimentation Equilibrium 259 11.5 Scaling Theory 260 References 262 Problems 263 12 Optical Rotatory Dispersion and Circular Dichroism 267 12.1 Polarized Light 267 12.2 Optical Rotatory Dispersion 267 12.3 Circular Dichroism 272 12.4 Cotton Effect 275 12.5 Correlation Between ORD and CD 277 12.6 Comparison of ORD and CD 280 References 281 Problems 281 13 High-Performance Liquid Chromatography and Electrophoresis 284 13.1 High-Performance Liquid Chromatography 284 13.1.1 Chromatographic Terms and Parameters 284 13.1.2 Theory of Chromatography 289 13.1.3 Types of HPLC 291 13.2 Electrophoresis 300 13.2.1 Basic Theory 300 13.2.2 General Techniques of Modern Electrophoresis 305 13.2.3 Agarose Gel Electrophoresis and Polyacrylamide Gel Electrophoresis 307 13.2.4 Southern Blot Northern Blot and Western Blot 309 13.2.5 Sequencing DNA Fragments 310 13.2.6 Isoelectric Focusing and Isotachophoresis 310 13.3 Field-Flow Fractionation 314 References 317 Problems 318 14 Light Scattering 320 14.1 Rayleigh Scattering 320 14.2 Fluctuation Theory (Debye) 324 14.3 Determination of Molecular Weight and Molecular Interaction 329 14.3.1 Two-Component Systems 329 14.3.2 Multicomponent Systems 329 14.3.3 Copolymers 331 14.3.4 Correction of Anisotropy and Deporalization of Scattered Light 333 14.4 Internal Interference 333 14.5 Determination of Molecular Weight and Radius of Gyration of the Zimm Plot 337 Appendix Experimental Techniques of the Zimm Plot 341 References 345 Problems 346 15 Fourier Series 348 15.1 Preliminaries 348 15.2 Fourier Series 350 15.2.1 Basic Fourier Series 350 15.2.2 Fourier Sine Series 352 15.2.3 Fourier Cosine Series 352 15.2.4 Complex Fourier Series 353 15.2.5 Other Forms of Fourier Series 353 15.3 Conversion of Infinite Series into Integrals 354 15.4 Fourier Integrals 354 15.5 Fourier Transforms 356 15.5.1 Fourier Transform Pairs 356 15.6 Convolution 359 15.6.1 Definition 359 15.6.2 Convolution Theorem 361 15.6.3 Convolution and Fourier Theory: Power Theorem 361 15.7 Extension of Fourier Series and Fourier Transform 362 15.7.1 Lorentz Line Shape 362 15.7.2 Correlation Function 363 15.8 Discrete Fourier Transform 364 15.8.1 Discrete and Inverse Discrete Fourier Transform 364 15.8.2 Application of DFT 365 15.8.3 Fast Fourier Transform 366 Appendix 367 References 368 Problems 369 16 Small-Angle X-Ray Scattering Neutron Scattering and Laser Light Scattering 371 16.1 Small-Angle X-ray Scattering 371 16.1.1 Apparatus 372 16.1.2 Guinier Plot 373 16.1.3 Correlation Function 375 16.1.4 On Size and Shape of Proteins 377 16.2 Small-Angle Neutron Scattering 381 16.2.1 Six Types of Neutron Scattering 381 16.2.2 Theory 382 16.2.3 Dynamics of a Polymer Solution 383 16.2.4 Coherently Elastic Neutron Scattering 384 16.2.5 Comparison of Small-Angle Neutron Scattering with Light Scattering 384 16.2.6 Contrast Factor 386 16.2.7 Lorentzian Shape 388 16.2.8 Neutron Spectroscopy 388 16.3 Laser Light Scattering 389 16.3.1 Laser Light-Scattering Experiment 389 16.3.2 Autocorrelation and Power Spectrum 390 16.3.3 Measurement of Diffusion Coefficient in General 391 16.3.4 Application to Study of Polymers in Semidilute Solutions 393 16.3.4.1 Measurement of Lag Times 393 16.3.4.2 Forced Rayleigh Scattering 394 16.3.4.3 Linewidth Analysis 394 References 395 Problems 396 17 Electronic and Infrared Spectroscopy 399 17.1 Ultraviolet (and Visible) Absorption Spectra 400 17.1.1 Lambert-Beer Law 402 17.1.2 Terminology 403 17.1.3 Synthetic Polymers 405 17.1.4 Proteins 406 17.1.5 Nucleic Acids 409 17.2 Fluorescence Spectroscopy 412 17.2.1 Fluorescence Phenomena 412 17.2.2 Emission and Excitation Spectra 413 17.2.3 Quenching 413 17.2.4 Energy Transfer 416 17.2.5 Polarization and Depolarization 418 17.3 Infrared Spectroscopy 420 17.3.1 Basic Theory 420 17.3.2 Absorption Bands: Stretching and Bending 421 17.3.3 Infrared Spectroscopy of Synthetic Polymers 424 17.3.4 Biological Polymers 427 17.3.5 Fourier Transform Infrared Spectroscopy 428 References 430 Problems 432 18 Protein Molecules 436 18.1 Protein Sequence and Structure 436 18.1.1 Sequence 436 18.1.2 Secondary Structure 437 18.1.2.1 a-Helix and b-Sheet 437 18.1.2.2 Classification of Proteins 439 18.1.2.3 Torsion Angles 440 18.1.3 Tertiary Structure 441 18.1.4 Quarternary Structure 441 18.2 Protein Structure Representations 441 18.2.1 Representation Symbols 441 18.2.2 Representations of Whole Molecule 442 18.3 Protein Folding and Refolding 444 18.3.1 Computer Simulation 445 18.3.2 Homolog Modeling 447 18.3.3 De Novo Prediction 447 18.4 Protein Misfolding 448 18.4.1 Biological Factor: Chaperones 448 18.4.2 Chemical Factor: Intra- and Intermolecular Interactions 449 18.4.3 Brain Diseases 450 18.5 Genomics Proteomics and Bioinformatics 451 18.6 Ribosomes: Site and Function of Protein Synthesis 452 References 454 19 Nuclear Magnetic Resonance 455 19.1 General Principles 455 19.1.1 Magnetic Field and Magnetic Moment 455 19.1.2 Magnetic Properties of Nuclei 456 19.1.3 Resonance 458 19.1.4 Nuclear Magnetic Resonance 460 19.2 Chemical Shift (d) and Spin-Spin Coupling Constant (J) 461 19.3 Relaxation Processes 466 19.3.1 Spin-Lattice Relaxation and Spin-Spin Relaxation 467 19.3.2 Nuclear Quadrupole Relaxation and Overhauser Effect 469 19.4 NMR Spectroscopy 470 19.4.1 Pulse Fourier Transform Method 471 19.4.1.1 Rotating Frame of Reference 471 19.4.1.2 The 90 Pulse 471 19.4.2 One-Dimensional NMR 472 19.4.3 Two-Dimensional NMR 473 19.5 Magnetic Resonance Imaging 475 19.6 NMR Spectra of Macromolecules 477 19.6.1 Poly(methyl methacrylate) 477 19.6.2 Polypropylene 481 19.6.3 Deuterium NMR Spectra of Chain Mobility in Polyethylene 482 19.6.4 Two-Dimensional NMR Spectra of Poly-g-benzyl-L-glutamate 485 19.7 Advances in NMR Since 1994 487 19.7.1 Apparatus 487 19.7.2 Techniques 487 19.7.2.1 Computer-Aided Experiments 487 19.7.2.2 Modeling of Chemical Shift 488 19.7.2.3 Protein Structure Determination 489 19.7.2.4 Increasing Molecular Weight of Proteins for NMR study 491 19.8 Two Examples of Protein NMR 491 19.8.1 A Membrane Protein 493 19.8.2 A Brain Protein: Prion 494 References 494 Problems 495 20 X-Ray Crystallography 497 20.1 X-Ray Diffraction 497 20.2 Crystals 498 20.2.1 Miller Indices, hkl 498 20.2.2 Unit Cells or Crystal Systems 502 20.2.3 Crystal Drawing 503 20.3 Symmetry in Crystals 504 20.3.1 Bravais Lattices 505 20.3.2 Point Group and Space Group 506 20.3.2.1 Point Groups 507 20.3.2.2 Interpretation of Stereogram 509 20.3.2.3 Space Groups 512 20.4 Fourier Synthesis 515 20.4.1 Atomic Scattering Factor 515 20.4.2 Structure Factor 515 20.4.3 Fourier Synthesis of Electron Density 516 20.5 Phase Problem 517 20.5.1 Patterson Synthesis 517 20.5.2 Direct Method (Karle-Hauptmann Approach) 518 20.6 Refinement 519 20.7 Crystal Structure of Macromolecules 520 20.7.1 Synthetic Polymers 520 20.7.2 Proteins 523 20.7.3 DNA 523 20.8 Advances in X-Ray Crystallography Since 1994 525 20.8.1 X-Ray Sources 525 20.8.2 New Instruments 526 20.8.3 Structures of Proteins 526 20.8.3.1 Comparison of X-Ray Crystallography with NMR Spectroscopy 527 20.8.4 Protein Examples: Polymerse and Anthrax 528 Appendix Neutron Diffraction 530 References 532 Problems 533 Author Index 535 Subject Index 543

「Nielsen BookData」 より

詳細情報

ページトップへ