Physical chemistry of macromolecules : basic principles and issues
著者
書誌事項
Physical chemistry of macromolecules : basic principles and issues
John Wiley & Sons, c2004
2nd ed
- : hard : acid-free paper
電子リソースにアクセスする 全1件
大学図書館所蔵 件 / 全6件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"A Wiley-Interscience publication."
Includes bibliographical references and indexes
内容説明・目次
内容説明
Integrating coverage of polymers and biological macromolecules into a single text, Physical Chemistry of Macromolecules is carefully structured to provide a clear and consistent resource for beginners and professionals alike. The basic knowledge of both biophysical and physical polymer chemistry is covered, along with important terms, basic structural properties and relationships. This book includes end of chapter problems and references, and also:
Enables users to improve basic knowledge of biophysical chemistry and physical polymer chemistry.
Explores fully the principles of macromolecular chemistry, methods for determining molecular weight and configuration of molecules, the structure of macromolecules, and their separations.
目次
Preface to the Second Edition xv
Preface to the First Edition xix
1 Introduction 1
1.1 Colloids 1
1.2 Macromolecules 3
1.2.1 Synthetic Polymers 4
1.2.2 Biological Polymers 7
1.3 Macromolecular Science 17
References 17
2 Syntheses of Macromolecular Compounds 19
2.1 Radical Polymerization 19
2.1.1 Complications 21
2.1.2 Methods of Free-Radical Polymerization 23
2.1.3 Some Well-Known Overall Reactions of Addition Polymers 23
2.2 Ionic Polymerization 25
2.2.1 Anionic Polymerization 25
2.2.2 Cationic Polymerization 27
2.2.3 Living Polymers 27
2.3 Coordination Polymerization 30
2.4 Stepwise Polymerization 32
2.5 Kinetics of the Syntheses of Polymers 33
2.5.1 Condensation Reactions 34
2.5.2 Chain Reactions 35
2.6 Polypeptide Synthesis 40
2.6.1 Synthesis of Insulin 43
2.6.2 Synthesis of Ribonucleus 48
2.7 DNA Synthesis 48
References 50
Problems 50
3 Distribution of Molecular Weight 52
3.1 Review of Mathematical Statistics 53
3.1.1 Binomial Distribution 53
3.1.2 Poisson Distribution 54
3.1.3 Gaussian Distribution 55
3.2 One-Parameter Equation 56
3.2.1 Condensation Polymers 57
3.2.2 Addition Polymers 58
3.3 Two-Parameter Equations 59
3.3.1 Normal Distribution 59
3.3.2 Logarithm Normal Distribution 60
3.4 Types of Molecular Weight 61
3.5 Experimental Methods for Determining Molecular Weight and Molecular Weight Distribution 64
References 65
Problems 65
4 Macromolecular Thermodynamics 67
4.1 Review of Thermodynamics 68
4.2 S of Mixing: Flory Theory 71
4.3 H of Mixing 75
4.3.1 Cohesive Energy Density 76
4.3.2 Contact Energy (First-Neighbor Interaction or Energy Due to Contact) 79
4.4 G of Mixing 81
4.5 Partial Molar Quantities 81
4.5.1 Partial Specific Volume 82
4.5.2 Chemical Potential 83
4.6 Thermodynamics of Dilute Polymer Solutions 84
4.6.1 Vapor Pressure 87
4.6.2 Phase Equilibrium 89
Appendix: Thermodynamics and Critical Phenomena 91
References 92
Problems 93
5 Chain Configurations 96
5.1 Preliminary Descriptions of a Polymer Chain 97
5.2 Random Walk and the Markov Process 98
5.2.1 Random Walk 99
5.2.2 Markov Chain 101
5.3 Random-Flight Chains 103
5.4 Wormlike Chains 105
5.5 Flory's Mean-Field Theory 106
5.6 Perturbation Theory 107
5.6.1 First-Order Perturbation Theory 108
5.6.2 Cluster Expansion Method 108
5.7 Chain Crossover and Chain Entanglement 109
5.7.1 Concentration Effect 109
5.7.2 Temperature Effect 114
5.7.3 Tube Theory (Reptation Theory) 116
5.7.4 Images of Individual Polymer Chains 118
5.8 Scaling and Universality 119
Appendix A Scaling Concepts 120
Appendix B Correlation Function 121
References 123
Problems 124
6 Liquid Crystals 127
6.1 Mesogens 128
6.2 Polymeric Liquid Crystals 130
6.2.1 Low-Molecular Weight Liquid Crystals 131
6.2.2 Main-Chain Liquid-Crystalline Polymers 132
6.2.3 Side-Chain Liquid-Crystalline Polymers 132
6.2.4 Segmented-Chain Liquid-Crystalline Polymers 133
6.3 Shapes of Mesogens 133
6.4 Liquid-Crystal Phases 134
6.4.1 Mesophases in General 134
6.4.2 Nematic Phase 135
6.4.3 Smectic Phase 135
6.4.3.1 Smectic A and C 136
6.4.4 Compounds Representing Some Mesophases 136
6.4.5 Shape and Phase 137
6.4.6 Decreasing Order and H of Phase Transition 138
6.5 Thermotropic and Lyotropic Liquid Crystals 138
6.6 Kerr Effect 140
6.7 Theories of Liquid-Crystalline Ordering 141
6.7.1 Rigid-Rod Model 141
6.7.2 Lattice Model 142
6.7.3 De Genne's Fluctuation Theory 144
6.8 Current Industrial Applications of Liquid Crystals 145
6.8.1 Liquid Crystals Displays 146
6.8.2 Electronic Devices 147
References 149
7 Rubber Elasticity 150
7.1 Rubber and Rubberlike Materials 150
7.2 Network Structure 151
7.3 Natural Rubber and Synthetic Rubber 152
7.4 Thermodynamics of Rubber 154
7.5 Statistical Theory of Rubber Elasticity 158
7.6 Gels 162
References 163
Problems 164
8 Viscosity and Viscoelasticity 165
8.1 Viscosity 165
8.1.1 Capillary Viscometers 166
8.1.2 Intrinsic Viscosity 170
8.1.3 Treatment of Intrinsic Viscosity Data 172
8.1.4 Stokes' Law 176
8.1.5 Theories in Relation to Intrinsic Viscosity of Flexible Chains 176
8.1.6 Chain Entanglement 179
8.1.7 Biological Polymers (Rigid Polymers Inflexible Chains) 181
8.2 Viscoelasticity 184
8.2.1 Rouse Theory 187
8.2.2 Zimm Theory 190
References 192
Problems 193
9 Osmotic Pressure 198
9.1 Osmometers 199
9.2 Determination of Molecular Weight and Second Virial Coefficient 199
9.3 Theories of Osmotic Pressure and Osmotic Second Virial Coefficient 202
9.3.1 McMillan-Mayer Theory 203
9.3.2 Flory Theory 204
9.3.3 Flory-Krigbaum Theory 205
9.3.4 Kurata-Yamakawa Theory 207
9.3.5 des Cloizeaux-de Gennes Scaling Theory 209
9.3.6 Scatchard's Equation for Macro Ions 213
Appendix A Ensembles 215
Appendix B Partition Functions 215
Appendix C Mean-Field Theory and Renormalization Group Theory 216
Appendix D Lagrangian Theory 217
Appendix E Green's Function 217
References 218
Problems 218
10 Diffusion 223
10.1 Translational Diffusion 223
10.1.1 Fick's First and Second Laws 223
10.1.2 Solution to Continuity Equation 224
10.2 Physical Interpretation of Diffusion: Einstein's Equation of Diffusion 226
10.3 Size Shape and Molecular Weight Determinations 229
10.3.1 Size 229
10.3.2 Shape 230
10.3.3 Molecular Weight 231
10.4 Concentration Dependence of Diffusion Coefficient 231
10.5 Scaling Relation for Translational Diffusion Coefficient 233
10.6 Measurements of Translational Diffusion Coefficient 234
10.6.1 Measurement Based on Fick's First Law 234
10.6.2 Measurement Based on Fick's Second Law 235
10.7 Rotational Diffusion 237
10.7.1 Flow Birefringence 239
10.7.2 Fluorescence Depolarization 239
References 240
Problems 240
11 Sedimentation 243
11.1 Apparatus 244
11.2 Sedimentation Velocity 246
11.2.1 Measurement of Sedimentation Coefficients: Moving-Boundary Method 246
11.2.2 Svedberg Equation 249
11.2.3 Application of Sedimentation Coefficient 249
11.3 Sedimentation Equilibrium 250
11.3.1 Archibald Method 251
11.3.2 Van Holde-Baldwin (Low-Speed) Method 254
11.3.3 Yphantis (High-Speed) Method 256
11.3.4 Absorption System 258
11.4 Density Gradient Sedimentation Equilibrium 259
11.5 Scaling Theory 260
References 262
Problems 263
12 Optical Rotatory Dispersion and Circular Dichroism 267
12.1 Polarized Light 267
12.2 Optical Rotatory Dispersion 267
12.3 Circular Dichroism 272
12.4 Cotton Effect 275
12.5 Correlation Between ORD and CD 277
12.6 Comparison of ORD and CD 280
References 281
Problems 281
13 High-Performance Liquid Chromatography and Electrophoresis 284
13.1 High-Performance Liquid Chromatography 284
13.1.1 Chromatographic Terms and Parameters 284
13.1.2 Theory of Chromatography 289
13.1.3 Types of HPLC 291
13.2 Electrophoresis 300
13.2.1 Basic Theory 300
13.2.2 General Techniques of Modern Electrophoresis 305
13.2.3 Agarose Gel Electrophoresis and Polyacrylamide Gel Electrophoresis 307
13.2.4 Southern Blot Northern Blot and Western Blot 309
13.2.5 Sequencing DNA Fragments 310
13.2.6 Isoelectric Focusing and Isotachophoresis 310
13.3 Field-Flow Fractionation 314
References 317
Problems 318
14 Light Scattering 320
14.1 Rayleigh Scattering 320
14.2 Fluctuation Theory (Debye) 324
14.3 Determination of Molecular Weight and Molecular Interaction 329
14.3.1 Two-Component Systems 329
14.3.2 Multicomponent Systems 329
14.3.3 Copolymers 331
14.3.4 Correction of Anisotropy and Deporalization of Scattered Light 333
14.4 Internal Interference 333
14.5 Determination of Molecular Weight and Radius of Gyration of the Zimm Plot 337
Appendix Experimental Techniques of the Zimm Plot 341
References 345
Problems 346
15 Fourier Series 348
15.1 Preliminaries 348
15.2 Fourier Series 350
15.2.1 Basic Fourier Series 350
15.2.2 Fourier Sine Series 352
15.2.3 Fourier Cosine Series 352
15.2.4 Complex Fourier Series 353
15.2.5 Other Forms of Fourier Series 353
15.3 Conversion of Infinite Series into Integrals 354
15.4 Fourier Integrals 354
15.5 Fourier Transforms 356
15.5.1 Fourier Transform Pairs 356
15.6 Convolution 359
15.6.1 Definition 359
15.6.2 Convolution Theorem 361
15.6.3 Convolution and Fourier Theory: Power Theorem 361
15.7 Extension of Fourier Series and Fourier Transform 362
15.7.1 Lorentz Line Shape 362
15.7.2 Correlation Function 363
15.8 Discrete Fourier Transform 364
15.8.1 Discrete and Inverse Discrete Fourier Transform 364
15.8.2 Application of DFT 365
15.8.3 Fast Fourier Transform 366
Appendix 367
References 368
Problems 369
16 Small-Angle X-Ray Scattering Neutron Scattering and Laser Light Scattering 371
16.1 Small-Angle X-ray Scattering 371
16.1.1 Apparatus 372
16.1.2 Guinier Plot 373
16.1.3 Correlation Function 375
16.1.4 On Size and Shape of Proteins 377
16.2 Small-Angle Neutron Scattering 381
16.2.1 Six Types of Neutron Scattering 381
16.2.2 Theory 382
16.2.3 Dynamics of a Polymer Solution 383
16.2.4 Coherently Elastic Neutron Scattering 384
16.2.5 Comparison of Small-Angle Neutron Scattering with Light Scattering 384
16.2.6 Contrast Factor 386
16.2.7 Lorentzian Shape 388
16.2.8 Neutron Spectroscopy 388
16.3 Laser Light Scattering 389
16.3.1 Laser Light-Scattering Experiment 389
16.3.2 Autocorrelation and Power Spectrum 390
16.3.3 Measurement of Diffusion Coefficient in General 391
16.3.4 Application to Study of Polymers in Semidilute Solutions 393
16.3.4.1 Measurement of Lag Times 393
16.3.4.2 Forced Rayleigh Scattering 394
16.3.4.3 Linewidth Analysis 394
References 395
Problems 396
17 Electronic and Infrared Spectroscopy 399
17.1 Ultraviolet (and Visible) Absorption Spectra 400
17.1.1 Lambert-Beer Law 402
17.1.2 Terminology 403
17.1.3 Synthetic Polymers 405
17.1.4 Proteins 406
17.1.5 Nucleic Acids 409
17.2 Fluorescence Spectroscopy 412
17.2.1 Fluorescence Phenomena 412
17.2.2 Emission and Excitation Spectra 413
17.2.3 Quenching 413
17.2.4 Energy Transfer 416
17.2.5 Polarization and Depolarization 418
17.3 Infrared Spectroscopy 420
17.3.1 Basic Theory 420
17.3.2 Absorption Bands: Stretching and Bending 421
17.3.3 Infrared Spectroscopy of Synthetic Polymers 424
17.3.4 Biological Polymers 427
17.3.5 Fourier Transform Infrared Spectroscopy 428
References 430
Problems 432
18 Protein Molecules 436
18.1 Protein Sequence and Structure 436
18.1.1 Sequence 436
18.1.2 Secondary Structure 437
18.1.2.1 a-Helix and b-Sheet 437
18.1.2.2 Classification of Proteins 439
18.1.2.3 Torsion Angles 440
18.1.3 Tertiary Structure 441
18.1.4 Quarternary Structure 441
18.2 Protein Structure Representations 441
18.2.1 Representation Symbols 441
18.2.2 Representations of Whole Molecule 442
18.3 Protein Folding and Refolding 444
18.3.1 Computer Simulation 445
18.3.2 Homolog Modeling 447
18.3.3 De Novo Prediction 447
18.4 Protein Misfolding 448
18.4.1 Biological Factor: Chaperones 448
18.4.2 Chemical Factor: Intra- and Intermolecular Interactions 449
18.4.3 Brain Diseases 450
18.5 Genomics Proteomics and Bioinformatics 451
18.6 Ribosomes: Site and Function of Protein Synthesis 452
References 454
19 Nuclear Magnetic Resonance 455
19.1 General Principles 455
19.1.1 Magnetic Field and Magnetic Moment 455
19.1.2 Magnetic Properties of Nuclei 456
19.1.3 Resonance 458
19.1.4 Nuclear Magnetic Resonance 460
19.2 Chemical Shift (d) and Spin-Spin Coupling Constant (J) 461
19.3 Relaxation Processes 466
19.3.1 Spin-Lattice Relaxation and Spin-Spin Relaxation 467
19.3.2 Nuclear Quadrupole Relaxation and Overhauser Effect 469
19.4 NMR Spectroscopy 470
19.4.1 Pulse Fourier Transform Method 471
19.4.1.1 Rotating Frame of Reference 471
19.4.1.2 The 90 Pulse 471
19.4.2 One-Dimensional NMR 472
19.4.3 Two-Dimensional NMR 473
19.5 Magnetic Resonance Imaging 475
19.6 NMR Spectra of Macromolecules 477
19.6.1 Poly(methyl methacrylate) 477
19.6.2 Polypropylene 481
19.6.3 Deuterium NMR Spectra of Chain Mobility in Polyethylene 482
19.6.4 Two-Dimensional NMR Spectra of Poly-g-benzyl-L-glutamate 485
19.7 Advances in NMR Since 1994 487
19.7.1 Apparatus 487
19.7.2 Techniques 487
19.7.2.1 Computer-Aided Experiments 487
19.7.2.2 Modeling of Chemical Shift 488
19.7.2.3 Protein Structure Determination 489
19.7.2.4 Increasing Molecular Weight of Proteins for NMR study 491
19.8 Two Examples of Protein NMR 491
19.8.1 A Membrane Protein 493
19.8.2 A Brain Protein: Prion 494
References 494
Problems 495
20 X-Ray Crystallography 497
20.1 X-Ray Diffraction 497
20.2 Crystals 498
20.2.1 Miller Indices, hkl 498
20.2.2 Unit Cells or Crystal Systems 502
20.2.3 Crystal Drawing 503
20.3 Symmetry in Crystals 504
20.3.1 Bravais Lattices 505
20.3.2 Point Group and Space Group 506
20.3.2.1 Point Groups 507
20.3.2.2 Interpretation of Stereogram 509
20.3.2.3 Space Groups 512
20.4 Fourier Synthesis 515
20.4.1 Atomic Scattering Factor 515
20.4.2 Structure Factor 515
20.4.3 Fourier Synthesis of Electron Density 516
20.5 Phase Problem 517
20.5.1 Patterson Synthesis 517
20.5.2 Direct Method (Karle-Hauptmann Approach) 518
20.6 Refinement 519
20.7 Crystal Structure of Macromolecules 520
20.7.1 Synthetic Polymers 520
20.7.2 Proteins 523
20.7.3 DNA 523
20.8 Advances in X-Ray Crystallography Since 1994 525
20.8.1 X-Ray Sources 525
20.8.2 New Instruments 526
20.8.3 Structures of Proteins 526
20.8.3.1 Comparison of X-Ray Crystallography with NMR Spectroscopy 527
20.8.4 Protein Examples: Polymerse and Anthrax 528
Appendix Neutron Diffraction 530
References 532
Problems 533
Author Index 535
Subject Index 543
「Nielsen BookData」 より