Moduli spaces of polynomials in two variables
Author(s)
Bibliographic Information
Moduli spaces of polynomials in two variables
(Memoirs of the American Mathematical Society, no. 817)
American Mathematical Society, 2005
Available at 15 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"Volume 173, number 817 (second of 5 numbers)."
Includes bibliographical references (p. 135-136)
Description and Table of Contents
Description
In the space of polynomials in two variables $\mathbb{C}[x,y]$ with complex coefficients we let the group of automorphisms of the affine plane $\mathbb{A}^2_{\mathbb{C}}$ act by composition on the right. In this paper we investigate the geometry of the orbit space. We associate a graph with each polynomial in two variables that encodes part of its geometric properties at infinity; we define a partition of $\mathbb{C}[x,y]$ imposing that the polynomials in the same stratum are the polynomials with a fixed associated graph. The graphs associated with polynomials belong to certain class of graphs (called behaviour graphs), that has a purely combinatorial definition.We show that any behaviour graph is actually a graph associated with a polynomial. Using this we manage to give a quite precise geometric description of the subsets of the partition. We associate a moduli functor with each behaviour graph of the class, which assigns to each scheme $T$ the set of families of polynomials with the given graph parametrized over $T$. Later, using the language of groupoids, we prove that there exists a geometric quotient of the subsets of the partition associated with the given graph by the equivalence relation induced by the action of Aut$(\mathbb{C}^2)$. This geometric quotient is a coarse moduli space for the moduli functor associated with the graph. We also give a geometric description of it based on the combinatorics of the associated graph. The results presented in this memoir need the development of a certain combinatorial formalism. Using it we are also able to reprove certain known theorems in the subject.
Table of Contents
Introduction Automorphisms of the affine plane A partition on $\mathbb{C}[x,y]$ The geometry of the partition The action of Aut$(\mathbb{C}^2)$ on $\mathbb{C}[x,y]$ The moduli problem The moduli spaces Appendix A. Canonical orders Bibliography.
by "Nielsen BookData"