Convex analysis
著者
書誌事項
Convex analysis
(Princeton landmarks in mathematics and physics)(Princeton paperbacks)
Princeton University Press, 1997, c1970
- : pbk
大学図書館所蔵 全70件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Tenth pringing and first paperback printing in the Princeton Landmarks in Mathematics and Physics series, 1997"--T.p. verso
Bibliography: p. 433-446
Includes index
内容説明・目次
内容説明
Available for the first time in paperback, R. Tyrrell Rockafellar's classic study presents readers with a coherent branch of nonlinear mathematical analysis that is especially suited to the study of optimization problems. Rockafellar's theory differs from classical analysis in that differentiability assumptions are replaced by convexity assumptions. The topics treated in this volume include: systems of inequalities, the minimum or maximum of a convex function over a convex set, Lagrange multipliers, minimax theorems and duality, as well as basic results about the structure of convex sets and the continuity and differentiability of convex functions and saddle- functions. This book has firmly established a new and vital area not only for pure mathematics but also for applications to economics and engineering. A sound knowledge of linear algebra and introductory real analysis should provide readers with sufficient background for this book. There is also a guide for the reader who may be using the book as an introduction, indicating which parts are essential and which may be skipped on a first reading.
目次
*Frontmatter, pg. i*Preface, pg. vii*Contents, pg. ix*Introductory Remarks: A Guide Jar the Reader, pg. xi*Part I. Basic Concepts, pg. 1*Part II. Topological Properties, pg. 41*Part III. Duality Correspondences, pg. 93*Part IV. Representation and Inequalities, pg. 151*Part V. Differential Theory, pg. 211*Part VI. Constrained Extremum Problems, pg. 261*Part VII. Saddle-Functions and Minimax Theory, pg. 347*Part VIII. Convex Algebra, pg. 399*Comments and References, pg. 425*Bibliography, pg. 433*Index, pg. 447
「Nielsen BookData」 より