Machine learning for multimodal interaction : first International Workshop, MLMI 2004, Martigny, Switzerland, June 21-23, 2004 : revised selected papers
著者
書誌事項
Machine learning for multimodal interaction : first International Workshop, MLMI 2004, Martigny, Switzerland, June 21-23, 2004 : revised selected papers
(Lecture notes in computer science, 3361)
Springer, c2005
大学図書館所蔵 全18件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
This book contains a selection of refereed papers presented at the 1st Wo- shop on Machine Learning for Multimodal Interaction (MLMI 2004), held at the "Centre du Parc," Martigny, Switzerland, during June 21-23, 2004. The workshop was organized and sponsored jointly by three European projects, - AMI, Augmented Multiparty Interaction, http://www.amiproject.org - PASCAL, Pattern Analysis, Statistical Modeling and Computational Learning, http://www.pascal-network.org - M4, Multi-modal Meeting Manager, http://www.m4project.org as well as the Swiss National Centre of Competence in Research (NCCR): - IM2: Interactive Multimodal Information Management, http://www.im2.ch MLMI 2004 was thus sponsored by the European Commission and the Swiss National Science Foundation. Given the multiple links between the above projects and several related - search areas, it was decided to organize a joint workshop bringing together - searchers from the di?erent communities working around the common theme of advanced machine learning algorithms for processing and structuring mul- modal human interaction in meetings.
The motivation for creating such a forum, which could be perceived as a number of papers from di?erent research dis- plines, evolved from a real need that arose from these projects and the strong motivation of their partners for such a multidisciplinary workshop. This asse- ment was indeed con?rmed by the success of this ?rst MLMI workshop, which attracted more than 200 participants.
目次
MLMI 2004.- Accessing Multimodal Meeting Data: Systems, Problems and Possibilities.- Browsing Recorded Meetings with Ferret.- Meeting Modelling in the Context of Multimodal Research.- Artificial Companions.- Zakim - A Multimodal Software System for Large-Scale Teleconferencing.- Towards Computer Understanding of Human Interactions.- Multistream Dynamic Bayesian Network for Meeting Segmentation.- Using Static Documents as Structured and Thematic Interfaces to Multimedia Meeting Archives.- An Integrated Framework for the Management of Video Collection.- The NITE XML Toolkit Meets the ICSI Meeting Corpus: Import, Annotation, and Browsing.- S-SEER: Selective Perception in a Multimodal Office Activity Recognition System.- Mapping from Speech to Images Using Continuous State Space Models.- An Online Algorithm for Hierarchical Phoneme Classification.- Towards Predicting Optimal Fusion Candidates: A Case Study on Biometric Authentication Tasks.- Mixture of SVMs for Face Class Modeling.- AV16.3: An Audio-Visual Corpus for Speaker Localization and Tracking.- The 2004 ICSI-SRI-UW Meeting Recognition System.- On the Adequacy of Baseform Pronunciations and Pronunciation Variants.- Tandem Connectionist Feature Extraction for Conversational Speech Recognition.- Long-Term Temporal Features for Conversational Speech Recognition.- Speaker Indexing in Audio Archives Using Gaussian Mixture Scoring Simulation.- Speech Transcription and Spoken Document Retrieval in Finnish.- A Mixed-Lingual Phonological Component Which Drives the Statistical Prosody Control of a Polyglot TTS Synthesis System.- Shallow Dialogue Processing Using Machine Learning Algorithms (or Not).- ARCHIVUS: A System for Accessing the Content of Recorded Multimodal Meetings.- Piecing Together the Emotion Jigsaw.- Emotion Analysis in Man-Machine Interaction Systems.- A Hierarchical System for Recognition, Tracking and Pose Estimation.- Automatic Pedestrian Tracking Using Discrete Choice Models and Image Correlation Techniques.- A Shape Based, Viewpoint Invariant Local Descriptor.
「Nielsen BookData」 より