Knowledge discovery in inductive databases : third International Workshop, KDID 2004, Pisa, Italy, September 20, 2004 : revised selected and invited papers
著者
書誌事項
Knowledge discovery in inductive databases : third International Workshop, KDID 2004, Pisa, Italy, September 20, 2004 : revised selected and invited papers
(Lecture notes in computer science, 3377)
Springer, c2005
大学図書館所蔵 全18件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
The3rdInternationalWorkshoponKnowledgeDiscoveryinInductiveDatabases (KDID 2004) was held in Pisa, Italy, on September 20, 2004 as part of the 15th European Conference on Machine Learning and the 8th European Conference onPrinciplesandPracticeofKnowledgeDiscoveryinDatabases(ECML/PKDD 2004). Ever since the start of the ?eld of data mining, it has been realized that the knowledge discovery and data mining process should be integrated into database technology. This idea has been formalized in the concept of inductive databases, introduced by Imielinski and Mannila (CACM 1996, 39(11)). In general, an inductive database is a database that supports data mining and the knowledge discovery process in a natural and elegant way. In addition to the usual data, it also contains inductive generalizations (e.g., patterns, models) extracted from the data. Within this framework, knowledge discovery is an - teractive process in which users can query the inductive database to gain insight to the data and the patterns and models within that data. Despite many recent developments, there still exists a pressing need to - derstandthecentralissuesininductivedatabases.Thisworkshopaimedtobring together database and data mining researchers and practitioners who are int- ested in the numerous challenges that inductive databases o?
ers. This workshop followed the previous two workshops: KDID 2002 held in Helsinki, Finland, and KDID 2003 held in Cavtat-Dubrovnik, Croatia.
目次
Invited Paper.- Models and Indices for Integrating Unstructured Data with a Relational Database.- Contributed Papers.- Constraint Relaxations for Discovering Unknown Sequential Patterns.- Mining Formal Concepts with a Bounded Number of Exceptions from Transactional Data.- Theoretical Bounds on the Size of Condensed Representations.- Mining Interesting XML-Enabled Association Rules with Templates.- Database Transposition for Constrained (Closed) Pattern Mining.- An Efficient Algorithm for Mining String Databases Under Constraints.- An Automata Approach to Pattern Collections.- Implicit Enumeration of Patterns.- Condensed Representation of EPs and Patterns Quantified by Frequency-Based Measures.
「Nielsen BookData」 より