Lie algebras and algebraic groups

著者
    • Tauvel, Patrice
    • Yu, Rupert W. T.
書誌事項

Lie algebras and algebraic groups

Patrice Tauvel, Rupert W. T. Yu

(Springer monographs in mathematics)

Springer, c2005

この図書・雑誌をさがす
注記

Includes bibliographical references (p. [641]-644) and index

内容説明・目次

内容説明

Devoted to the theory of Lie algebras and algebraic groups, this book includes a large amount of commutative algebra and algebraic geometry so as to make it as self-contained as possible. The aim of the book is to assemble in a single volume the algebraic aspects of the theory, so as to present the foundations of the theory in characteristic zero. Detailed proofs are included, and some recent results are discussed in the final chapters.

目次

Preface 1. Results on topological spaces 1.1 Irreducible sets and spaces 1.2 Dimension 1.3 Noetherian spaces 1.4 Constructible sets 1.5 Gluing topological spaces 2. Rings and modules 2.1 Ideals 2.2 Prime and maximal ideals 2.3 Rings of fractions and localization 2.4 Localization of modules 2.5 Radical of an ideal 2.6 Local rings 2.7 Noetherian rings and modules 2.8 Derivations 2.9 Module of differentials 3. Integral extensions 3.1 Integral dependence 3.2 Integrally closed rings 3.3 Extensions of prime ideals 4. Factorial rings 4.1 Generalities 4.2 Unique factorization 4.3 Principal ideal domains and Euclidean domains 4.4 Polynomial and factorial rings 4.5 Symmetric polynomials 4.6 Resultant and discriminant 5. Field extensions 5.1 Extensions 5.2 Algebraic and transcendental elements 5.3 Algebraic extensions 5.4 Transcendence basis 5.5 Norm and trace 5.6 Theorem of the primitive element 5.7 Going Down Theorem 5.8 Fields and derivations 5.9 Conductor 6. Finitely generated algebras 6.1 Dimension 6.2 Noether's Normalization Theorem 6.3 Krull's Principal Ideal Theorem 6.4 Maximal ideals 6.5 Zariski topology 7. Gradings and filtrations 7.1 Graded rings and graded modules 7.2 Graded submodules 7.3 Applications 7.4 Filtrations 7.5 Grading associated to a filtration 8. Inductive limits 8.1 Generalities 8.2 Inductive systems of maps 8.3 Inductive systems of magmas, groups and rings 8.4 An example 8.5 Inductive systems of algebras 9. Sheaves of functions 9.1 Sheaves 9.2 Morphisms 9.3 Sheaf associated to a presheaf 9.4 Gluing 9.5 Ringed space 10. Jordan decomposition and some basic results on groups 10.1 Jordan decomposition 10.2 Generalities on groups 10.3 Commutators 10.4 Solvable groups 10.5 Nilpotent groups 10.6 Group actions 10.7 Generalities on representations 10.8 Examples 11. Algebraic sets 11.1 Affine algebraic sets 11.2 Zariski topology 11.3 Regular functions 11.4 Morphisms 11.5 Examples of morphisms 11.6 Abstract algebraic sets 11.7 Principal open subsets 11.8 Products of algebraic sets 12. Prevarieties and varieties 12.1 Structure sheaf 12.2 Algebraic prevarieties 12.3 Morphisms of prevarieties 12.4 Products of prevarieties 12.5 Algebraic varieties 12.6 Gluing 12.7 Rational functions 12.8 Local rings of a variety 13. Projective varieties 13.1 Projective spaces 13.2 Projective spaces and varieties 13.3 Cones and projective varieties 13.4 Complete varieties 13.5 Products 13.6 Grassmannian variety 14. Dimension 14.1 Dimension of varieties 14.2 Dimension and the number of equations 14.3 System of parameters 14.4 Counterexamples 15. Morphisms

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示
詳細情報
  • NII書誌ID(NCID)
    BA71894751
  • ISBN
    • 9783540241706
  • LCCN
    2005922400
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Berlin
  • ページ数/冊数
    xvi, 653 p.
  • 大きさ
    25 cm
  • 件名
  • 親書誌ID
ページトップへ