Kleinian groups which are limits of geometrically finite groups
Author(s)
Bibliographic Information
Kleinian groups which are limits of geometrically finite groups
(Memoirs of the American Mathematical Society, no. 834)
American Mathematical Society, 2005
Available at 16 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"Volume 177, number 834 (second of 4 numbers)."
Includes bibliographical references (p. 111-113) and index
Description and Table of Contents
Description
Ahlfors conjectured in 1964 that the limit set of every finitely generated Kleinian group either has Lebesgue measure $0$ or is the entire $S^2$. We prove that this conjecture is true for purely loxodromic Kleinian groups which are algebraic limits of geometrically finite groups. What we directly prove is that if a purely loxodromic Kleinian group $\Gamma$ is an algebraic limit of geometrically finite groups and the limit set $\Lambda_\Gamma$ is not the entire $S^2_\infty$, then $\Gamma$ is topologically (and geometrically) tame, that is, there is a compact 3-manifold whose interior is homeomorphic to ${\mathbf H}^3[LAMBDA]Gamma$. The proof uses techniques of hyperbolic geometry considerably and is based on works of Maskit, Thurston, Bonahon, Otal, and Canary.
Table of Contents
Preliminaries Statements of theorems Characteristic compression bodies The Masur domain and Ahlfors' conjecture Branched covers and geometric limit Non-realizable measured laminations Strong convergence of function groups Proof of the main theorem Bibliography Index.
by "Nielsen BookData"