Matrix algebra
著者
書誌事項
Matrix algebra
(Econometric exercises, 1)
Cambridge University Press, 2005
- : pbk
大学図書館所蔵 全42件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 423-425
Includes index
内容説明・目次
内容説明
Matrix Algebra is the first volume of the Econometric Exercises Series. It contains exercises relating to course material in matrix algebra that students are expected to know while enrolled in an (advanced) undergraduate or a postgraduate course in econometrics or statistics. The book contains a comprehensive collection of exercises, all with full answers. But the book is not just a collection of exercises; in fact, it is a textbook, though one that is organized in a completely different manner than the usual textbook. The volume can be used either as a self-contained course in matrix algebra or as a supplementary text.
目次
- Part I. Vectors: 1. Real vectors
- 2 Complex vectors
- Part II. Matrices: 3. Real matrices
- 4. Complex matrices
- Part III. Vector Spaces: 5. Complex and real vector spaces
- 6. Inner-product space
- 7. Hilbert space
- Part IV. Rank, Inverse, and Determinant: 8. Rank
- 9. Inverse
- 10. Determinant
- Part V. Partitioned Matrices: 11. Basic results and multiplication relations
- 12. Inverses
- 13. Determinants
- 14. Rank (in)equalities
- 15. The sweep operator
- Part VI. Systems of Equations: 16. Elementary matrices
- 17. Echelon matrices
- 18. Gaussian elimination
- 19. Homogeneous equations
- 20. Nonhomogeneous equations
- Part VII. Eigenvalues, Eigenvectors, and Factorizations: 21. Eigenvalues and eigenvectors
- 22. Symmetric matrices
- 23. Some results for triangular matrices
- 24. Schur's decomposition theorem and its consequences
- 25. Jordan's decomposition theorem
- 26. Jordan chains and generalized eigenvectors
- Part VIII. Positive (Semi)Definite and Idempotent Matrices: 27. Positive (semi)definite matrices
- 28. Partitioning and positive (semi)definite matrices
- 29. Idempotent matrices
- Part IX. Matrix Functions: 30. Simple functions
- 31. Jordan representation
- 32. Matrix-polynomial representation
- Part X. Kronecker Product, Vec-Operator, and Moore-Penrose Inverse: 33. The Kronecker product
- 34. The vec-operator
- 35. The Moore-Penrose inverse
- 36. Linear vector and matrix equations
- 37. The generalized inverse
- Part XI. Patterned Matrices, Commutation and Duplication Matrix: 38. The commutation matrix
- 39. The symmetrizer matrix
- 40. The vec-operator and the duplication matrix
- 41. Linear structures
- Part XII. Matrix Inequalities: 42. Cauchy-Schwarz type inequalities
- 43. Positive (semi)definite matrix inequalities
- 44. Inequalities derived from the Schur complement
- 45. Inequalities concerning eigenvalues
- Part XIII. Matrix calculus: 46. Basic properties of differentials
- 47. Scalar functions
- 48. Vector functions
- 49. Matrix functions
- 50. The inverse
- 51. Exponential and logarithm
- 52. The determinant
- 53. Jacobians
- 54. Sensitivity analysis in regression models
- 55. The Hessian matrix
- 56. Least squares and best linear unbiased estimation
- 57. Maximum likelihood estimation
- 58. Inequalities and equalities.
「Nielsen BookData」 より