Mathematical foundation of quantum mechanics
Author(s)
Bibliographic Information
Mathematical foundation of quantum mechanics
(Texts and readings in mathematics, 35)
Hindustan Book Agency, c2005
Available at 8 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
This is a brief introduction to the mathematical foundations of quantum mechanics based on lectures given by the author to Ph.D.students at the Delhi Centre of the Indian Statistical Institute in order to initiate active research in the emerging field of quantum probability. The material in the first chapter is included in the author's book "An Introduction to Quantum Stochastic Calculus" published by Birkhauser Verlag in 1992 and the permission of the publishers to reprint it here is acknowledged. Apart from quantum probability, an understanding of the role of group representations in the development of quantum mechanics is always a fascinating theme for mathematicians. The first chapter deals with the definitions of states, observables and automorphisms of a quantum system through Gleason's theorem, Hahn-Hellinger theorem and Wigner's theorem. Mackey's imprimitivity theorem and the theorem of inducing representations of groups in stages are proved directly for projective unitary antiunitary representations in the second chapter. Based on a discussion of multipliers on locally compact groups in the third chapter all the well-known observables of classical quantum theory like linear momenta, orbital and spin angular momenta, kinetic and potential energies, gauge operators etc., are derived solely from Galilean covariance in the last chapter. A very short account of observables concerning a relativistic free particle is included. In conclusion, the spectral theory of Schrodinger operators of one and two electron atoms is discussed in some detail.
Table of Contents
- Chapter 1. PROBABILITY THEORY ON THE LATTICE OF PROJECTIONS IN A HILBERT SPACE
- Chapter 2. SYSTEMS WITH A CONFIGURATION UNDER A GROUP ACTION
- Chapter 3. MULTIPLIERS ON LOCALLY COMPACT GROUPS
- Chapter 4. THE BASIC OBSERVABLES OF A QUANTUM MECHANICAL SYSTEM
- Bibliography.
by "Nielsen BookData"