Relatively hyperbolic groups : intrinsic geometry, algebraic properties, and algorithmic problems
著者
書誌事項
Relatively hyperbolic groups : intrinsic geometry, algebraic properties, and algorithmic problems
(Memoirs of the American Mathematical Society, no. 843)
American Mathematical Society, 2006
大学図書館所蔵 件 / 全15件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"January 2006, volume 179, number 843 (second of 5 numbers)."
Includes bibliographical references (p. 97-100)
内容説明・目次
内容説明
In this paper we obtain an isoperimetric characterization of relatively hyperbolicity of a groups with respect to a collection of subgroups. This allows us to apply classical combinatorial methods related to van Kampen diagrams to obtain relative analogues of some well-known algebraic and geometric properties of ordinary hyperbolic groups. We also introduce and study the notion of a relatively quasi-convex subgroup of a relatively hyperbolic group and solve some natural algorithmic problems.
目次
Introduction Relative isoperimetric inequalities Geometry of finitely generated relatively hyperbolic groups Algebraic properties Algorithmic problems Open questions Appendix. Equivalent definitions of relative hyperbolicity Bibliography.
「Nielsen BookData」 より