微分積分 : 基礎理論と展開
著者
書誌事項
微分積分 : 基礎理論と展開
東京図書, 2006.2
- タイトル別名
-
微分積分基礎理論と展開
- タイトル読み
-
ビブン セキブン : キソ リロン ト テンカイ
大学図書館所蔵 全115件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
この図書・雑誌をさがす
注記
監修: 飯高茂
参考文献: p[273]
内容説明・目次
内容説明
吸い込まれるように読める、自然な流れの解析学読本。「近づく」や「連続」等の意味が、本書でよく理解できるようになる。「曲線の長さ・面積・体積とは、本当は何なのか」という根源的な疑問を解決しつつ、多様体論、複素関数論、楕円関数論など進んだ数学への展望を広げながら、微分積分学への核心へと誘う。各セクションの最初には、そこで扱われる内容を象徴する「テーマ問題」を提示した。そして、その問題を解決する鍵となる概念や定理を紹介し、やがて解けるというストーリーを試みた。またk‐フィボナッチ数列、k‐パスカル三角形などの興味ある独自の題材を扱い、自分で数学を研究する楽しみを追体験できるよう配慮した。章末には、代数幾何学をリードしてきた飯高茂氏によるユニークな数学史のコラムがつく。
目次
- ε‐δ論法と微分積分への準備
- 第2章 微分積分学の基本定理の証明
- 第3章 逆関数と微分積分
- 第4章 微分積分の応用
- 第5章 数値計算法
- 第6章 多変数関数の微分
- 第7章 多変数関数の積分
- 第8章 偏微分法の応用
- 第9章 級数
「BOOKデータベース」 より