Hölder continuity of weak solutions to subelliptic equations with rough coefficients
著者
書誌事項
Hölder continuity of weak solutions to subelliptic equations with rough coefficients
(Memoirs of the American Mathematical Society, no. 847)
American Mathematical Society, c2006
大学図書館所蔵 件 / 全13件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references
内容説明・目次
内容説明
We study interior regularity of weak solutions of second order linear divergence form equations with degenerate ellipticity and rough coefficients. In particular, we show that solutions of large classes of sub elliptic equations with bounded measurable coefficients are Holder continuous. We present two types of results dealing with such equations. The first type generalizes the celebrated Fefferman-Phong geometric characterization of sub ellipticity in the smooth case. We introduce a notion of $L^q$-sub ellipticity for the rough case and develop an axiomatic method which provides a near characterization of the notion of $L^q$-sub ellipticity.The second type deals with generalizing a case of Hormanders' celebrated algebraic characterization of sub ellipticity for sums of squares of real analytic vector fields. In this case, we introduce a 'flag condition' as a substitute for the Hormander commutator condition which turns out to be equivalent to it in the smooth case. The question of regularity for quasilinear sub elliptic equations with smooth coefficients provides motivation for our study, and we briefly indicate some applications in this direction, including degenerate Monge-Ampere equations.
目次
Introduction Comparisons of conditions Proof of the general subellipticity theorem Reduction of the proofs of the rough diagonal extensions of Hormander's theorem Homogeneous spaces and subrepresentation inequalities Appendix Bibliography.
「Nielsen BookData」 より