Bayesian networks and probabilistic inference in forensic science
Author(s)
Bibliographic Information
Bayesian networks and probabilistic inference in forensic science
(Statistics in practice)
John Wiley & Sons, c2006
Available at 6 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Authors: Franco Taroni, Colin Aitken, Paolo Garbolino, Alex Biedermann
Includes bibliographical references and indexes
Description and Table of Contents
Description
The amount of information forensic scientists are able to offer is ever increasing, owing to vast developments in science and technology. Consequently, the complexity of evidence does not allow scientists to cope adequately with the problems it causes, or to make the required inferences. Probability theory, implemented through graphical methods, specifically Bayesian networks, offers a powerful tool to deal with this complexity, and discover valid patterns in data."Bayesian Networks and Probabilistic Inference in Forensic Science" provides a unique and comprehensive introduction to the use of Bayesian networks for the evaluation of scientific evidence in forensic science. It includes self-contained introductions to both Bayesian networks and probability.
Following are the features of the book: features implementation of the methodology using HUGIN, the leading Bayesian networks software; presents basic standard networks that can be implemented in commercially and academically available software packages, and that form the core models necessary for the reader's own analysis of real cases; and, provides a technique for structuring problems and organizing uncertain data based on methods and principles of scientific reasoning.Contains a method for constructing coherent and defensible arguments for the analysis and evaluation of forensic evidence. It is written in a lucid style, suitable for forensic scientists with minimal mathematical background. It includes a foreword by David Schum. The clear and accessible style makes this book ideal for all forensic scientists and applied statisticians working in evidence evaluation, as well as graduate students in these areas. It will also appeal to scientists, lawyers and other professionals interested in the evaluation of forensic evidence and/or Bayesian networks.
Table of Contents
Preface. Foreword. 1. The logic of uncertainty. 1.1 Uncertainty and probability. 1.2 Reasoning under uncertainty. 1.3 Frequencies and probabilities. 1.4 Induction and probability. 1.5 Further readings. 2. The logic of Bayesian networks. 2.1 Reasoning with graphical models. 2.2 Reasoning with Bayesian networks. 2.3 Further readings. 3. Evaluation of scientific evidence. 3.1 Introduction. 3.2 The value of evidence. 3.3 Relevant propositions. 3.4 Pre-assessment of the case. 3.5 Evaluation using graphical models. 4. Bayesian networks for evaluating scientific evidence. 4.1 Issues in one-trace transfer cases. 4.2 When evidence has more than one component: footwear marks evidence. 4.3 Scenarios with more than one stain. 5. DNA evidence. 5.1 DNA likelihood ratio. 5.2 Network approaches to the DNA likelihood ratio. 5.3 Missing suspect. 5.4 Analysis when the alternative proposition is that a sibling of the suspect left the stain. 5.5 Interpretation with more than two propositions. 5.6 Evaluation of evidence with more than two propositions. 5.7 Partial matches. 5.8 Mixtures. 5.9 Relatedness testing. 5.10 Database search. 5.11 Error rates. 5.12 Sub-population and co-ancestry coefficient. 5.13 Further reading. 6. Transfer evidence. 6.1 Assessment of transfer evidence under crime level propositions. 6.2 Assessment of transfer evidence under activity level propositions. 6.3 Cross- or two-way transfer of evidential material. 6.4 Increasing the level of detail of selected nodes. 6.5 Missing evidence. 7. Aspects of the combination of evidence. 7.1 Introduction. 7.2 A difficulty in combining evidence. 7.3 The likelihood ratio and the combination of evidence. 7.4 Combination of distinct items of evidence. 8. Pre-assessment. 8.1 Introduction. 8.2 Pre-assessment. 8.3 Pre-assessment for a fibres scenario. 8.4 Pre-assessment in a cross-transfer scenario. 8.5 Pre-assessment with multiple propositions. 8.6 Remarks. 9. Qualitative and sensitivity analyses. 9.1 Qualitative probability models. 9.2 Sensitivity analyses. 10. Continuous networks. 10.1 Introduction. 10.2 Samples and estimates. 10.3 Measurements. 10.4 Use of a continuous distribution which is not normal. 10.5 Appendix. 11. Further applications. 11.1 Offender profiling. 11.2 Decision making. Bibliography. Author Index. Subject Index.
by "Nielsen BookData"