On boundary interpolation for matrix valued Schur functions
著者
書誌事項
On boundary interpolation for matrix valued Schur functions
(Memoirs of the American Mathematical Society, no. 856)
American Mathematical Society, 2006
大学図書館所蔵 件 / 全13件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"Volume 181, number 856 (end of volume)"
Includes bibliographical references (p. 105-107)
内容説明・目次
内容説明
A number of interpolation problems are considered in the Schur class of $p\times q$ matrix valued functions $S$ that are analytic and contractive in the open unit disk. The interpolation constraints are specified in terms of nontangential limits and angular derivatives at one or more (of a finite number of) boundary points. Necessary and sufficient conditions for existence of solutions to these problems and a description of all the solutions when these conditions are met is given. The analysis makes extensive use of a class of reproducing kernel Hilbert spaces ${\mathcal{H}}(S)$ that was introduced by de Branges and Rovnyak. The Stein equation that is associated with the interpolation problems under consideration is analyzed in detail. A lossless inverse scattering problem is also considered.
目次
Introduction Preliminaries Fundamental matrix inequalities On $\mathcal{H}(\Theta)$ spaces Parametrizations of all solutions The equality case Nontangential limits The Nevanlinna-Pick boundary problem A multiple analogue of the Caratheodory-Julia theorem On the solvability of a Stein equation Positive definite solutions of the Stein equation A Caratheodory-Fejer boundary problem The full matrix Caratheodory-Fejer boundary problem The lossless inverse scattering problem Bibliography.
「Nielsen BookData」 より