Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces
著者
書誌事項
Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces
(Memoirs of the American Mathematical Society, no. 857)
American Mathematical Society, c2006
大学図書館所蔵 全16件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Volume 182, number 857 (first of 4 numbers)"
Bibliography: p. 111-119
内容説明・目次
内容説明
The object of the present study is to characterize the traces of the Sobolev functions in a sub-Riemannian, or Carnot-Caratheodory space. Such traces are defined in terms of suitable Besov spaces with respect to a measure which is concentrated on a lower dimensional manifold, and which satisfies an Ahlfors type condition with respect to the standard Lebesgue measure. We also study the extension problem for the relevant Besov spaces. Various concrete applications to the setting of Carnot groups are analyzed in detail and an application to the solvability of the subelliptic Neumann problem is presented.
目次
Introduction Carnot groups The characteristic set $X$-variation, $X$-perimeter and surface measure Geometric estimates from above on CC balls for the perimeter measure Geometric estimates from below on CC balls for the perimeter measure Fine differentiability properties of Sobolev functions Embedding a Sobolev space into a Besov space with respect to an upper Ahlfors measure The extension theorem for a Besov space with respect to a lower Ahlfors measure Traces on the boundary of $(\epsilon,\delta)$ domains The embedding of $B^p_\beta(\Omega,d\mu)$ into $L^q(\Omega,d\mu)$ Returning to Carnot groups The Neumann problem The case of Lipschitz vector fields Bibliography.
「Nielsen BookData」 より