Carleson measures and interpolating sequences for Besov spaces on complex balls
著者
書誌事項
Carleson measures and interpolating sequences for Besov spaces on complex balls
(Memoirs of the American Mathematical Society, no. 859)
American Mathematical Society, c2006
大学図書館所蔵 件 / 全13件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"Volume 182, number 859 (third of 4 numbers)"
Bibliography: p. 163
内容説明・目次
内容説明
We characterize Carleson measures for the analytic Besov spaces $B_{p}$ on the unit ball $\mathbb{B}_{n}$ in $\mathbb{C}^{n}$ in terms of a discrete tree condition on the associated Bergman tree $\mathcal{T}_{n}$. We also characterize the pointwise multipliers on $B_{p}$ in terms of Carleson measures. We then apply these results to characterize the interpolating sequences in $\mathbb{B}_{n}$ for $B_{p}$ and their multiplier spaces $M_{B_{p}}$, generalizing a theorem of Boe in one dimension.The interpolating sequences for $B_{p}$ and for $M_{B_{p}}$ are precisely those sequences satisfying a separation condition and a Carleson embedding condition. These results hold for $1\less p \less \infty$ with the exceptions that for $2+\frac{1}{n-1}\leq p<\infty$, the necessity of the tree condition for the Carleson embedding is left open, and for $2+\frac{1}{n-1}\leq p\leq2n$, the sufficiency of the separation condition and the Carleson embedding for multiplier interpolation is left open; the separation and tree conditions are however sufficient for multiplier interpolation. Novel features of our proof of the interpolation theorem for $M_{B_{p}}$ include the crucial use of the discrete tree condition for sufficiency, and a new notion of holomorphic Besov space on a Bergman tree, one suited to modeling spaces of holomorphic functions defined by the size of higher order derivatives, for necessity.
目次
Introduction A tree structure for the unit ball $\mathbb{B}_n$ in $\mathbb{C}^n$ Carleson measures Pointwise multipliers Interpolating sequences An almost invariant holomorphic derivative Besov spaces on trees Holomorphic Besov spaces on Bergman trees Completing the multiplier interpolation loop Appendix Bibliography.
「Nielsen BookData」 より