Dynamic data assimilation : a least squares approach

Bibliographic Information

Dynamic data assimilation : a least squares approach

John M. Lewis, S. Lakshmivarahan, Sudarshan Dhall

(Encyclopedia of mathematics and its applications / edited by G.-C. Rota)

Cambridge University Press, 2006

Available at  / 48 libraries

Search this Book/Journal

Note

"Encyclopedia of mathematics and its applications 104" on book cover

Includes bibliographical references (p. 630-647) and index

Description and Table of Contents

Description

Dynamic data assimilation is the assessment, combination and synthesis of observational data, scientific laws and mathematical models to determine the state of a complex physical system, for instance as a preliminary step in making predictions about the system's behaviour. The topic has assumed increasing importance in fields such as numerical weather prediction where conscientious efforts are being made to extend the term of reliable weather forecasts beyond the few days that are presently feasible. This book is designed to be a basic one-stop reference for graduate students and researchers. It is based on graduate courses taught over a decade to mathematicians, scientists, and engineers, and its modular structure accommodates the various audience requirements. Thus Part I is a broad introduction to the history, development and philosophy of data assimilation, illustrated by examples; Part II considers the classical, static approaches, both linear and nonlinear; and Part III describes computational techniques. Parts IV to VII are concerned with how statistical and dynamic ideas can be incorporated into the classical framework. Key themes covered here include estimation theory, stochastic and dynamic models, and sequential filtering. The final part addresses the predictability of dynamical systems. Chapters end with a section that provides pointers to the literature, and a set of exercises with instructive hints.

Table of Contents

  • 1. Synopsis
  • 2. Pathways into data assimilation: illustrative examples
  • 3. Applications
  • 4. Brief history of data assimilation
  • 5. Linear least squares estimation: method of normal equations
  • 6. A geometric view: projection and invariance
  • 7. Nonlinear least squares estimation
  • 8. Recursive least squares estimation
  • 9. Matrix methods
  • 10. Optimisation: steepest descent method
  • 11. Conjugate direction/gradient methods
  • 12. Newton and quasi-Newton methods
  • 13. Principles of statistical estimation
  • 14. Statistical least squares estimation
  • 15. Maximum likelihood method
  • 16. Bayesian estimation method
  • 17. From Gauss to Kalman: sequential, linear minimum variance estimation
  • 18. Data assimilation-static models: concepts and formulation
  • 19. Classical algorithms for data assimilation
  • 20. 3DVAR - a Bayesian formulation
  • 21. Spatial digital filters
  • 22. Dynamical data assimilation: the straight line problem
  • 23. First-order adjoint method: linear dynamics
  • 24. First-order adjoint method: nonlinear dynamics
  • 25. Second-order adjoint method
  • 26. The ADVAR problem: a statistical and a recursive view
  • 27. Linear filtering - Part I: Kalman filter
  • 28. Linear filtering-part II
  • 29. Nonlinear filtering
  • 30. Reduced rank filters
  • 31. Predictability: a stochastic view
  • 32. Predictability: a deterministic view
  • Bibliography
  • Index.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BA77941162
  • ISBN
    • 9780521851558
  • Country Code
    uk
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Cambridge, UK
  • Pages/Volumes
    xxii, 654 p.
  • Size
    24 cm
  • Classification
  • Subject Headings
  • Parent Bibliography ID
Page Top