The Beilinson complex and canonical rings of irregular surfaces

Bibliographic Information

The Beilinson complex and canonical rings of irregular surfaces

Alberto Canonaco

(Memoirs of the American Mathematical Society, no. 862)

American Mathematical Society, 2006

Available at  / 15 libraries

Search this Book/Journal

Note

"September 2006, volume 183, number 862 (second of 4 numbers)."

Includes bibliographical references (p. 95-96) and index

Description and Table of Contents

Description

An important theorem by Beilinson describes the bounded derived category of coherent sheaves on $\mathbb{P}^n$, yielding in particular a resolution of every coherent sheaf on $\mathbb{P}^n$ in terms of the vector bundles $\Omega_{\mathbb{P}^n}^j(j)$ for $0\le j\le n$. This theorem is here extended to weighted projective spaces. To this purpose we consider, instead of the usual category of coherent sheaves on $\mathbb{P}({\rm w})$ (the weighted projective space of weights $\rm w=({\rm w}_0,\dots,{\rm w}_n)$), a suitable category of graded coherent sheaves (the two categories are equivalent if and only if ${\rm w}_0=\cdots={\rm w}_n=1$, i.e. $\mathbb{P}({\rm w})= \mathbb{P}^n$), obtained by endowing $mathbb{P}({\rm w})$ with a natural graded structure sheaf. The resulting graded ringed space $\overline{\mathbb{P}}({\rm w})$ is an example of graded scheme (in chapter 1 graded schemes are defined and studied in some greater generality than is needed in the rest of the work).Then in chapter 2 we prove for graded coherent sheaves on $\overline{\mathbb{P}}({\rm w})$ a result which is very similar to Beilinson's theorem on $\mathbb{P}^n$, with the main difference that the resolution involves, besides $\Omega_{\overline{\mathbb{P}}({\rm w})}^j(j)$ for $0\le j\le n$, also $\mathcal{O}_{\overline{\mathbb{P}}({\rm w})}(1)$ for $n-\sum_{i=0}^n{\rm w}_i\1\0$. This weighted version of Beilinson's theorem is then applied in chapter 3 to prove a structure theorem for good birational weighted canonical projections of surfaces of general type (i.e., for morphisms, which are birational onto the image, from a minimal surface of general type $S$ into a $3$-dimensional $\mathbb{P}({\rm w})$, induced by $4$ sections $\sigma_i\in H\0(S, \mathcal{O}_S({\rm w}_iK_S))$).This is a generalization of a theorem by Catanese and Schreyer (who treated the case of projections into $\mathbb{P}^3$), and is mainly interesting for irregular surfaces, since in the regular case a similar but simpler result (due to Catanese) was already known. The theorem essentially states that giving a good birational weighted canonical projection is equivalent to giving a symmetric morphism of (graded) vector bundles on $\overline{\mathbb{P}}({\rm w})$, satisfying some suitable conditions. Such a morphism is then explicitly determined in chapter 4 for a family of surfaces with numerical invariants $p_g=q=2$, $K^2=4$, projected into $\mathbb{P}(1,1,2,3)$.

Table of Contents

Introduction Graded schemes Beilinson's theorem on $\bar{\mathbb{P}(\textrm{w})$ The theorem on weighted canonical projections Applications to surfaces with $p_g=q=2$, $K^2=4$ Abelian categories and derived categories Bibliography Index.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

Page Top