Explorations in topology : map coloring, surfaces, and knots
著者
書誌事項
Explorations in topology : map coloring, surfaces, and knots
Elsevier Academic Press, c2007
大学図書館所蔵 全19件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Explorations in Topology gives students a rich experience with low-dimensional topology, enhances their geometrical and topological intuition, empowers them with new approaches to solving problems, and provides them with experiences that would help them make sense of a future, more formal topology course.
The innovative story-line style of the text models the problems-solving process, presents the development of concepts in a natural way, and through its informality seduces the reader into engagement with the material. The end-of-chapter Investigations give the reader opportunities to work on a variety of open-ended, non-routine problems, and, through a modified "Moore method", to make conjectures from which theorems emerge. The students themselves emerge from these experiences owning concepts and results. The end-of-chapter Notes provide historical background to the chapter's ideas, introduce standard terminology, and make connections with mainstream mathematics.
The final chapter of projects provides opportunities for continued involvement in "research" beyond the topics of the book.
目次
Preface vii
Chapter 1: Acme Does Maps and Considers Coloring Them
Chapter 2: Acme Adds Tours
Chapter 3: Acme Collects Data from Maps
Chapter 4: Acme Collects More Data, Proves a Theorem, and Returns to Coloring Maps
Chapter 5: Acme's Solicitor Proves a Theorem: the Four-Color Conjecture
Chapter 6: Acme Adds Doughnuts to Its Repertoire
Chapter 7: Acme Considers the Moebius Strip
Chapter 8: Acme Creates New Worlds: Klein Bottles and Other Surfaces
Chapter 9: Acme Makes Order Out of Chaos: Surface Sums and Euler Numbers
Chapter 10: Acme Classifies Surfaces
Chapter 11: Acme Encounters the Fourth Dimension
Chapter 12: Acme Colors Maps on Surfaces: Heawood's Estimate
Chapter 13: Acme Gets All Tied Up with Knots
Chapter 14: Where to Go from Here: Projects
Index
「Nielsen BookData」 より