Introduction to singularities and deformations
著者
書誌事項
Introduction to singularities and deformations
(Springer monographs in mathematics)
Springer, c2007
大学図書館所蔵 全40件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"This text has grown up from a preparatory part of our monograph Singular algebraic curves (to appear), ..."--Pref., p. [vii]
Includes bibliographical references (p. [447]-453) and index
内容説明・目次
内容説明
Singularity theory is a young, rapidly-growing topic with connections to algebraic geometry, complex analysis, commutative algebra, representations theory, Lie groups theory and topology, and many applications in the natural and technical sciences. This book presents the basic singularity theory of analytic spaces, including local deformation theory and the theory of plane curve singularities. It includes complete proofs.
目次
I. Singularity Theory.- Basic Properties of Complex Spaces and Germs.- Weierstrass Preparation and Finiteness Theorem.- Application to Analytic Algebras.- Complex Spaces.- Complex Space Germs and Singularities.- Finite Morphisms and Finite Coherence Theorem.- Applications of the Finite Coherence Theorem.- Finite Morphisms and Flatness.- Flat Morphisms and Fibres.- Singular Locus and Differential Forms.- Hypersurface Singularities.- Invariants of Hypersurface Singularities.- Finite Determinacy.- Algebraic Group Actions.- Classification of Simple Singularities.- Plane Curve Singularities.- Parametrization.- Intersection Multiplicity.- Resolution of Plane Curve Singularities.- Classical Topological and Analytic Invariants
II. Local Deformation Theory.- Deformations of Complex Space Germs.- Deformations of Singularities.- Embedded Deformations.- Versal Deformations.- Infinitesimal Deformations.- Obstructions.- Equisingular Deformations of Plane Curve Singularities.- Equisingular Deformations of the Equation.- The Equisingularity Ideal.- Deformations of the Parametrization.- Computation of T^1 and T^2 .- Equisingular Deformations of the Parametrization.- Equinormalizable Deformations.- Versal Equisingular Deformations.-Appendices: Sheaves.- Commutative Algebra.- Formal Deformation Theory.- Literature.- Index
「Nielsen BookData」 より