String theory in a nutshell

Bibliographic Information

String theory in a nutshell

Elias Kiritsis

Princeton University Press, c2007

Search this Book/Journal
Note

Includes bibliographical references (p. [553]-573) and index

Description and Table of Contents

Description

This book is the essential new introduction to modern string theory, by one of the world's authorities on the subject. Concise, clearly presented, and up-to-date, String Theory in a Nutshell brings together the best understood and most important aspects of a theory that has been evolving since the early 1980s. A core model of physics that substitutes one-dimensional extended "strings" for zero-dimensional point-like particles (as in quantum field theory), string theory has been the leading candidate for a theory that would successfully unify all fundamental forces of nature, including gravity. Starting with the basic definitions of the theory, Elias Kiritsis guides readers through classic and modern topics. In particular, he treats perturbative string theory and its Conformal Field Theory (CFT) tools in detail while also developing nonperturbative aspects and exploring the unity of string interactions. He presents recent topics including black holes, their microscopic entropy, and the AdS/CFT correspondence. He also describes matrix model tools for string theory. In all, the book contains nearly five hundred exercises for the graduate-level student, and works as a self-contained and detailed guide to the literature. String Theory in a Nutshell is the staple one-volume reference on the subject not only for students and researchers of theoretical high-energy physics, but also for mathematicians and physicists specializing in theoretical cosmology and QCD.

Table of Contents

Preface xv Abbreviations xvii Chapter 1: Introduction 1 1.1 Prehistory 1 1.2 The Case for String Theory 3 1.3 A Stringy Historical Perspective 6 1.4 Conventions 8 Bibliography 9 Chapter 2: Classical String Theory 10 2.1 The Point Particle 10 2.2 Relativistic Strings 14 2.3 Oscillator Expansions 20 2.3.1 Closed strings 20 2.3.2 Open strings 22 2.3.3 The Virasoro constraints 24 Bibliography 26 Exercises 26 Chapter 3: Quantization of Bosonic Strings 28 3.1 Covariant Canonical Quantization 28 3.2 Light-cone Quantization 31 3.3 Spectrum of the Bosonic String 32 3.4 Unoriented Strings 33 3.4.1 Open strings and Chan-Paton factors 34 3.5 Path Integral Quantization 37 3.6 Topologically Nontrivial World-sheets 39 3.7 BRST Primer 40 3.8 BRST in String Theory and the Physical Spectrum 42 Bibliography 46 Exercises 46 Chapter 4: Conformal Field Theory 49 4.1 Conformal Transformations 49 4.1.1 The case of two dimensions 51 4.2 Conformally Invariant Field Theory 52 4.3 Radial Quantization 54 4.4 Mode Expansions 57 4.5 The Virasoro Algebra and the Central Charge 58 4.6 The Hilbert Space 59 4.7 The Free Boson 60 4.8 The Free Fermion 63 4.9 The Conformal Anomaly 64 4.10 Representations of the Conformal Algebra 66 4.11 Affine Current Algebras 69 4.12 Free Fermions and O(N) Affine Symmetry 71 4.13 Superconformal Symmetry 77 4.13.1 N = (1,0)2 superconformal symmetry 77 4.13.2 N = (2,0)2 superconformal symmetry 79 4.13.3 N = (4,0)2 superconformal symmetry 81 4.14 Scalars with Background Charge 82 4.15 The CFT of Ghosts 84 4.16 CFT on the Disk 86 4.16.1 Free massless bosons on the disk 86 4.16.2 Free massless fermions on the disk 88 4.16.3 The projective plane 90 4.17 CFT on the Torus 90 4.18 Compact Scalars 93 4.18.1 Modular invariance 97 4.18.2 Decompactification 97 4.18.3 The torus propagator 97 4.18.4 Marginal deformations 98 4.18.5 Multiple compact scalars 98 4.18.6 Enhanced symmetry and the string Brout-Englert-Higgs effect 100 4.18.7 T-duality 101 4.19 Free Fermions on the Torus 103 4.20 Bosonization 105 4.20.1 "Bosonization" of bosonic ghost system 106 4.21 Orbifolds 107 4.22 CFT on Other Surfaces of Euler Number Zero 112 4.23 CFT on Higher-genus Riemann Surfaces 116 Bibliography 117 Exercises 118 Chapter 5: Scattering Amplitudes and Vertex Operators 126 5.1 Physical Vertex Operators 128 5.2 Calculation of Tree-level Tachyon Amplitudes 130 5.2.1 The closed string 130 5.2.2 The open string 131 5.3 The One-loop Vacuum Amplitudes 133 5.3.1 The torus 134 5.3.2 The cylinder 136 5.3.3 The Klein bottle 138 5.3.4 The Mobius strip 138 5.3.5 Tadpole cancellation 139 5.3.6 UV structure and UV-IR correspondence 140 Bibliography 141 Exercises 142 Chapter 6: Strings in Background Fields 144 6.1 The Nonlinear ?-model Approach 144 6.2 The Quest for Conformal Invariance 147 6.3 Linear Dilaton and Strings in D < 26 Dimensions 149 6.4 T-duality in Nontrivial Backgrounds 151 Bibliography 151 Exercises 152 Chapter 7: Superstrings and Supersymmetry 155 7.1 N = (1, 1)2 World-sheet Superconformal Symmetry 155 7.2 Closed (Type-II) Superstrings 157 7.2.1 Massless R-R states 159 7.3 Type-I Superstrings 162 7.4 Heterotic Superstrings 165 7.5 Superstring Vertex Operators 168 7.6 One-loop Superstring Vacuum Amplitudes 170 7.6.1 The type-IIA/B superstring 170 7.6.2 The heterotic superstring 171 7.6.3 The type-I superstring 171 7.7 Closed Superstrings and T-duality 174 7.7.1 The type-II string theories 174 7.7.2 The heterotic string 175 7.8 Supersymmetric Effective Actions 175 7.9 Anomalies 176 Bibliography 182 Exercises 183 Chapter 8: D-branes 187 8.1 Antisymmetric Tensors and p-branes 187 8.2 Open Strings and T-duality 188 8.3 D-branes 191 8.4 D-branes and R-R Charges 193 8.4.1 D-instantons 196 8.5 D-brane Effective Actions 197 8.5.1 The Dirac-Born-Infeld action 197 8.5.2 Anomaly-related terms 199 8.6 Multiple Branes and Nonabelian Symmetry 200 8.7 T-duality and Orientifolds 201 8.8 D-branes as Supergravity Solitons 205 8.8.1 The supergravity solutions 205 8.8.2 Horizons and singularities 207 8.8.3 The extremal branes and their near-horizon geometry 208 8.9 NS5-branes 211 Bibliography 213 Exercises 213 Chapter 9: Compactifications and Supersymmetry Breaking 219 9.1 Narain Compactifications 219 9.2 World-sheet versus Space-time Supersymmetry 223 9.2.1 N = 14 space-time supersymmetry 225 9.2.2 N = 24 space-time supersymmetry 226 9.3 Orbifold Reduction of Supersymmetry 228 9.4 A Heterotic Orbifold with N = 24 Supersymmetry 231 9.5 Spontaneous Supersymmetry Breaking 235 9.6 A Heterotic N = 14 Orbifold and Chirality in Four Dimensions 237 9.7 Calabi-Yau Manifolds 239 9.7.1 Holonomy 241 9.7.2 Consequences of SU(3) holonomy 242 9.7.3 The CY moduli space 243 9.8 N = 14 Heterotic Compactifications 245 9.8.1 The low-energy N = 14 heterotic spectrum 246 9.9 K3 Compactification of the Type-II String 247 9.10 N = 26 Orbifolds of the Type-II String 250 9.11 CY Compactifications of Type-II Strings 252 9.12 Mirror Symmetry 253 9.13 Absence of Continuous Global Symmetries 255 9.14 Orientifolds 256 9.14.1 K3 orientifolds 257 9.14.2 The Klein bottle amplitude 258 9.14.3 D-branes on T4/Z2 260 9.14.4 The cylinder amplitude 263 9.14.5 The Mobius strip amplitude 265 9.14.6 Tadpole cancellation 266 9.14.7 The open string spectrum 267 9.15 D-branes at Orbifold Singularities 268 9.16 Magnetized Compactifications and Intersecting Branes 271 9.16.1 Open strings in an internal magnetic field 272 9.16.2 Intersecting branes 277 9.16.3 Intersecting D6-branes 278 9.17 Where is the Standard Model? 280 9.17.1 The heterotic string 280 9.17.2 Type-II string theory 282 9.17.3 The type-I string 283 9.18 Unification 284 Bibliography 286 Exercises 287 Chapter 10: Loop Corrections to String Effective Couplings 294 10.1 Calculation of Heterotic Gauge Thresholds 296 10.2 On-shell Infrared Regularization 301 10.2.1 Evaluation of the threshold 303 10.3 Heterotic Gravitational Thresholds 304 10.4 One-loop Fayet-Iliopoulos Terms 305 10.5 N = 1, 24 Examples of Threshold Corrections 309 10.6 N = 24 Universality of Thresholds 312 10.7 Unification Revisited 315 Bibliography 317 Exercises 317 Chapter 11: Duality Connections and Nonperturbative Effects 320 11.1 Perturbative Connections 322 11.2 BPS States and BPS Bounds 323 11.3 Nonrenormalization Theorems and BPS-saturated Couplings 325 11.4 Type-IIA versus M-theory 328 11.5 Self-duality of the Type-IIB String 331 11.6 U-duality of Type-II String Theory 334 11.6.1 U-duality and bound states 336 11.7 Heterotic/Type I Duality in Ten Dimensions 336 11.7.1 The type-I D1-string 339 11.7.2 The type-I D5-brane 341 11.7.3 Further consistency checks 343 11.8 M-theory and the E8 x E8 Heterotic String 344 11.8.1 Unification at strong heterotic coupling 347 11.9 Heterotic/Type II Duality in Six Dimensions 348 11.9.1 Gauge symmetry enhancement and singular K3 surfaces 352 11.9.2 Heterotic/type II duality in four dimensions 355 11.10 Conifold Singularities and Conifold Transitions 356 Bibliography 362 Exercises 363 Chapter 12: Black Holes and Entropy in String Theory 369 12.1 A Brief History 369 12.2 The Strategy 370 12.3 Black-hole Thermodynamics 371 12.3.1 The Euclidean continuation 372 12.3.2 Hawking evaporation and greybody factors 374 12.4 The Information Problem and the Holographic Hypothesis 375 12.5 Five-dimensional Extremal Charged Black Holes 377 12.6 Five-dimensional Nonextremal RN Black Holes 379 12.7 The Near-horizon Region 381 12.8 Semiclassical Derivation of the Hawking Rate 383 12.9 The Microscopic Realization 386 12.9.1 The world-volume theory of the bound state 387 12.9.2 The low-energy SCFT of the D1-D5 bound state 389 12.9.3 Microscopic calculation of the entropy 391 12.9.4 Microscopic derivation of Hawking evaporation rates 394 12.10 Epilogue 396 Bibliography 398 Exercises 399 Chapter 13: The Bulk/Boundary Correspondence 403 13.1 Large-N Gauge Theories and String Theory 405 13.2 The Decoupling Principle 408 13.3 The Near-horizon Limit 409 13.4 Elements of the Correspondence 410 13.5 Bulk Fields and Boundary Operators 413 13.6 Holography 416 13.7 Testing the AdS5/CFT4 Correspondence 417 13.7.1 The chiral spectrum of N = 4 gauge theory 418 13.7.2 Matching to the string theory spectrum 420 13.7.3 N = 8 five-dimensional gauged supergravity 422 13.7.4 Protected correlation functions and anomalies 422 13.8 Correlation Functions 424 13.8.1 Two-point functions 425 13.8.2 Three-point functions 427 13.8.3 The gravitational action and the conformal anomaly 428 13.9 Wilson Loops 433 13.10 AdS5/CFT4 Correspondence at Finite Temperature 436 13.10.1 N = 4 super Yang-Mills theory at finite temperature 436 13.10.2 The near-horizon limit of black D3-branes 438 13.10.3 Finite-volume and large-N phase transitions 440 13.10.4 Thermal holographic physics 443 13.10.5 Spatial Wilson loops in (a version of ) QCD3 444 13.10.6 The glueball mass spectrum 446 13.11 AdS3/CFT2 Correspondence 447 13.11.1 The greybody factors revisited 450 13.12 The Holographic Renormalization Group 450 13.12.1 Perturbations of the CFT4 451 13.12.2 Domain walls and flow equations 452 13.12.3 A RG flow preserving N = 1 supersymmetry 454 13.13 The Randall-Sundrum Geometry 456 13.13.1 An alternative to compactification 459 Bibliography 462 Exercises 463 Chapter 14: String Theory and Matrix Models 470 14.1 M(atrix) Theory 471 14.1.1 Membrane quantization 471 14.1.2 Type-IIA D0 -branes and DLCQ 473 14.1.3 Gravitons and branes in M(atrix) theory 476 14.1.4 The two-graviton interaction from M(atrix) theory 477 14.2 Matrix Models and D = 1 Bosonic String Theory 479 14.2.1 The continuum limit 481 14.2.2 Solving the matrix model 482 14.2.3 The double-scaling limit 485 14.2.4 The free-fermion picture 487 14.3 Matrix Description of D = 2 String Theory 488 14.3.1 Matrix quantum mechanics and free fermions on the line 490 14.3.2 The continuum limit 492 14.3.3 The double-scaling limit 494 14.3.4 D-particles, tachyons, and holography 496 Bibliography 498 Exercises 498 Appendix A Two-dimensional Complex Geometry 503 Appendix B Differential Forms 505 Appendix C Theta and Other Elliptic Functions 507 C.1 ? and Related Functions 507 C.2 The Weierstrass Function 510 C.3 Modular Forms 510 C.4 Poisson Resummation 512 Appendix D Toroidal Lattice Sums 513 Appendix E Toroidal Kaluza-Klein Reduction 516 Appendix F The Reissner-Nordstro..m Black Hole 519 Appendix G Electric-magnetic Duality in D = 4 522 Appendix H Supersymmetric Actions in Ten and Eleven Dimensions 525 H.1 The N = 111 Supergravity 526 H.2 Type-IIA Supergravity 527 H.3 Type-IIB Supergravity 528 H.4 Type-II Supergravities: The Democratic Formulation 529 H.5 N = 110 Supersymmetry 530 Appendix I N = 1,2, Four-dimensional Supergravity Coupled to Matter 533 I.1 N = 14 Supergravity 533 I.2 N = 24 Supergravity 535 Appendix J BPS Multiplets in Four Dimensions 537 Appendix K The Geometry of Anti--de Sitter Space 541 K.1 The Minkowski Signature AdS 541 K.2 Euclidean AdS 544 K.3 The Conformal Structure of Flat Space 546 K.4 Fields in AdS 548 K.4.1 The wave equation in Poincare coordinates 549 K.4.2 The bulk-boundary propagator 550 K.4.3 The bulk-to-bulk propagator 551 Bibliography 553 Index 575

by "Nielsen BookData"

Details
  • NCID
    BA81571817
  • ISBN
    • 9780691122304
  • LCCN
    2006050586
  • Country Code
    us
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Princeton
  • Pages/Volumes
    xviii, 588 p.
  • Size
    26 cm
  • Classification
  • Subject Headings
Page Top