Basic number theory

Author(s)

Bibliographic Information

Basic number theory

André Weil

(Classics in mathematics)

Springer-Verlag, c1995

  • : pbk.

Available at  / 11 libraries

Search this Book/Journal

Note

"Reprint of the 1974 edition"--t.p.

Reprint. Originally published: 3rd ed. Berlin : Springer-Verlag, 1974

"Originally published as Vol. 144 of the Grundlehren der mathematischen Wissenschaften"--t.p. verso.

Includes index of definitions

Description and Table of Contents

Description

From the reviews: "L.R. Shafarevich showed me the first edition [...] and said that this book will be from now on the book about class field theory. In fact it is by far the most complete treatment of the main theorems of algebraic number theory, including function fields over finite constant fields, that appeared in book form." Zentralblatt MATH

Table of Contents

I. Elementary Theory.- I. Locally compact fields.- 1. Finite fields.- 2. The module in a locally compact field.- 3. Classification of locally compact fields.- 4. Structure of p-fields.- II. Lattices and duality over local fields.- 1. Norms.- 2. Lattices.- 3. Multiplicative structure of local fields.- 4. Lattices over R.- 5. Duality over local fields.- III. Places of A-fields.- 1. A-fields and their completions.- 2. Tensor-products of commutative fields.- 3. Traces and norms.- 4. Tensor-products of A-fields and local fields.- IV. Adeles.- 1. Adeles of A-fields.- 2. The main theorems.- 3. Ideles.- 4. Ideles of A-fields.- V. Algebraic number-fields.- 1. Orders in algebras over Q.- 2. Lattices over algebraic number-fields.- 3. Ideals.- 4. Fundamental sets.- VI. The theorem of Riemann-Roch.- VII. Zeta-functions of A-fields.- 1. Convergence of Euler products.- 2. Fourier transforms and standard functions.- 3. Quasicharacters.- 4. Quasicharacters of A-fields.- 5. The functional equation.- 6. The Dedekind zeta-function.- 7. L-functions.- 8. The coefficients of the L-series.- VIII. Traces and norms.- 1. Traces and norms in local fields.- 2. Calculation of the different.- 3. Ramification theory.- 4. Traces and norms in A-fields.- 5. Splitting places in separable extensions.- 6. An application to inseparable extensions.- II. Classfield Theory.- IX. Simple algebras.- 1. Structure of simple algebras.- 2. The representations of a simple algebra.- 3. Factor-sets and the Brauer group.- 4. Cyclic factor-sets.- 5. Special cyclic factor-sets.- X. Simple algebras over local fields.- 1. Orders and lattices.- 2. Traces and norms.- 3. Computation of some integrals.- XI. Simple algebras over A-fields.- 1. Ramification.- 2. The zeta-function of a simple algebra.- 3. Norms in simple algebras.- 4. Simple algebras over algebraic number-fields.- XII. Local classfield theory.- 1. The formalism of classfield theory.- 2. The Brauer group of a local field.- 3. The canonical morphism.- 4. Ramification of abelian extensions.- 5. The transfer.- XIII. Global classfield theory.- 1. The canonical pairing.- 2. An elementary lemma.- 3. Hasse's "law of reciprocity".- 4. Classfield theory for Q.- 5. The Hilbert symbol.- 6. The Brauer group of an A-field.- 7. The Hilbert p-symbol.- 8. The kernel of the canonical morphism.- 9. The main theorems.- 10. Local behavior of abelian extensions.- 11. "Classical" classfield theory.- 12. "Coronidis loco".- Notes to the text.- Appendix I. The transfer theorem.- Appendix III. Shafarevitch's theorem.- Appendix IV. The Herbrand distribution.- Index of definitions.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BA82573330
  • ISBN
    • 3540586555
  • Country Code
    gw
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Berlin
  • Pages/Volumes
    xviii, 312 p.
  • Size
    24 cm
  • Classification
  • Subject Headings
  • Parent Bibliography ID
Page Top