Stratified lie groups and potential theory for their sub-laplacians
著者
書誌事項
Stratified lie groups and potential theory for their sub-laplacians
(Springer monographs in mathematics)
Springer, c2007
大学図書館所蔵 件 / 全20件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
内容説明・目次
内容説明
This book provides an extensive treatment of Potential Theory for sub-Laplacians on stratified Lie groups. It also provides a largely self-contained presentation of stratified Lie groups, and of their Lie algebra of left-invariant vector fields. The presentation is accessible to graduate students and requires no specialized knowledge in algebra or differential geometry.
目次
Elements of Analysis of Stratified Groups.- Stratified Groups and Sub-Laplacians.- Abstract Lie Groups and Carnot Groups.- Carnot Groups of Step Two.- Examples of Carnot Groups.- The Fundamental Solution for a Sub-Laplacian and Applications.- Elements of Potential Theory for Sub-Laplacians.- Abstract Harmonic Spaces.- The ?-harmonic Space.- ?-subharmonic Functions.- Representation Theorems.- Maximum Principle on Unbounded Domains.- ?-capacity, ?-polar Sets and Applications.- ?-thinness and ?-fine Topology.- d-Hausdorff Measure and ?-capacity.- Further Topics on Carnot Groups.- Some Remarks on Free Lie Algebras.- More on the Campbell-Hausdorff Formula.- Families of Diffeomorphic Sub-Laplacians.- Lifting of Carnot Groups.- Groups of Heisenberg Type.- The Caratheodory-Chow-Rashevsky Theorem.- Taylor Formula on Homogeneous Carnot Groups.
「Nielsen BookData」 より