Evolution algebras and their applications
Author(s)
Bibliographic Information
Evolution algebras and their applications
(Lecture notes in mathematics, 1921)
Springer, c2008
Available at 58 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. [119]-121) and index
Description and Table of Contents
Description
The author explores evolution algebras, which lie between algebras and dynamical systems. Readers learn the foundations of evolution algebras theory and its applications in non-Mendelian genetics and Markov chains. They'll also discover evolution algebras' connections with other mathematical fields, including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the Ihara-Selberg zeta function.
Table of Contents
1. Introduction 2. Motivations 2.1. Examples from Biology 2.1.1 Asexual propagation 2.1.2. Gametic algebras in asexual inheritance 2.1.3. The Wright-Fisher model 2.2. Examples from Physics 2.2.1. Particles moving in a discrete space 2.2.2. Flows in a discrete space (networks) 2.2.3. Feynman graphs 2.3. Examples from Topology 2.3.1. Motions of particles in a 3-manifold 2.3.2. Random walks on braids with negative probabilities 2.4. Examples from Probability Theory 2.4.1. Stochastic processes 3. Evolution Algebras 3.1. Definitions and Basic Properties 3.1.1. Departure point 3.1.2. Existence of unity elements 3.1.3. Basic definitions 3.1.4. Ideals of an evolution algebra 3.1.5. Quotients of an evolution algebra 3.1.6. Occurrence relations 3.1.7. Several interesting identities 3.2. Evolution Operators and Multiplication Algebras 3.2.1. Evolution operators 3.2.2. Change of generator sets (Transformations of natural bases) 3.2.3. 'Rigidness' of generator sets of an evolution algebra 3.2.4. The automorphism group of an evolution algebra 3.2.5. The multiplication algebra of an evolution algebra 3.2.6. The derived Lie algebra of an evolution algebra 3.2.7. The centroid of an evolution algebra 3.3. Non-associative Banach Algebras 3.3.1. Definition of a norm over an evolution algebra 3.3.2. An evolution algebra as a Banach space 3.4. Periodicity and Algebraic Persistency 3.4.1. Periodicity of a generator in an evolution algebra 3.4.2. Algebraic persistency and algebraic transiency 3.5. Hierarchy of an Evolution Algebra 3.5.1. Periodicity of a simple evolution algebra 3.5.2. Semi-direct-sum decomposition of an evolution algebra 3.5.3. Hierarchy of an evolution algebra 3.5.4. Reducibility of an evolution algebra 4. Evolution Algebras and Markov Chains 4.1. Markov Chain and Its Evolution Algebra 4.1.1. Markov chains (discrete time) 4.1.2. The evolution algebra determined by a Markov chain 4.1.3. The Chapman-Kolmogorov equation 4.1.4. Concepts related to evolution operators 4.1.5. Basic algebraic properties of Markov chains 4.2. Algebraic Persistency and Probabilistic Persistency 4.2.1. Destination operator of evolution algebra M(X) 4.2.2. On the loss of coefficients (probabilities) 4.2.3. On the conservation of coefficients (probabilities) 4.2.4. Certain interpretations 4.2.5. Algebraic periodicity and probabilistic periodicity 4.3. Spectrum Theory of Evolution Algebras 4.3.1. Invariance of a probability flow 4.3.2. Spectrum of a simple evolution algebra 4.3.3. Spectrum of an evolution algebra at zero-th level 4.4. Hierarchies of General Markov Chains and Beyond 4.4.1. Hierarchy of a general Markov chain 4.4.2. Structure at the 0-th level in a hierarchy 4.4.3. 1-th structure of a hierarchy 4.4.4. k-th structure of a hierarchy 4.4.5. Regular evolution algebras 4.4.6. Reduced structure of evolution algebra M(X) 4.4.7. Examples and applications 5. Evolution Algebras and Non-Mendelian Genetics 5.1. History of General Genetic Algebras 5.2. Non-Mendelian Genetics and Its Algebraic Formulation 5.2.1. Some terms in population genetics 5.2.2. Mendelian versus non-Mendelian genetics 5.2.3. Algebraic formulation of non-Mendelian genetics 5.3. Algebras of Organelle Population Genetics 5.3.1. Heteroplasmy and homoplasmy 5.3.2. Coexistence of triplasmy 5.4. Algebraic Structures of Asexual Progenies of Phytophthora infestans 5.4.1. Basic bi
by "Nielsen BookData"