Computational neuroscience : theoretical insights into brain function
著者
書誌事項
Computational neuroscience : theoretical insights into brain function
(Progress in brain research, v. 165)
Elsevier, 2007
大学図書館所蔵 全13件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Computational neuroscience is a relatively new but rapidly expanding area of research which is becoming increasingly influential in shaping the way scientists think about the brain. Computational approaches have been applied at all levels of analysis, from detailed models of single-channel function, transmembrane currents, single-cell electrical activity, and neural signaling to broad theories of sensory perception, memory, and cognition. This book provides a snapshot of this exciting new field by bringing together chapters on a diversity of topics from some of its most important contributors. This includes chapters on neural coding in single cells, in small networks, and across the entire cerebral cortex, visual processing from the retina to object recognition, neural processing of auditory, vestibular, and electromagnetic stimuli, pattern generation, voluntary movement and posture, motor learning, decision-making and cognition, and algorithms for pattern recognition. Each chapter provides a bridge between a body of data on neural function and a mathematical approach used to interpret and explain that data. These contributions demonstrate how computational approaches have become an essential tool which is integral in many aspects of brain science, from the interpretation of data to the design of new experiments, and to the growth of our understanding of neural function.
目次
The neuronal transfer function: contributions from voltage and time-dependent mechanisms
E.P. Cook, A.C. Wilhelm, J.A. Guest, Y. Liang, N.Y. Masse and C.M. Colbert (Montreal QC, Canada and Houston, TX, USA).
A simple growth model constructs critical avalanche networks
L.F. Abbott and R. Rohrkemper (New York, NY, USA and Zurich, Switzerland).
The dynamics of visual responses in the primary visual cortex
R. Shapley, M. Hawken and D. Xing (New York, NY, USA).
A quantitative theory of immediate visual recognition
T. Serre, G. Kreiman, M. Kouh, C. Cadieu, U. Knoblich and T. Poggio (Boston, MA, USA).
Attention in hierarchical models of object recognition
D.B. Walther and C. Koch (Urbana, IL, and Pasadena,CA, USA).
Towards a unified theory of neocortex: laminar cortical circuits for vision and cognition
S. Grossberg (Boston, MA, USA).
Real-time neural coding of memory
J.Z. Tsien (Boston, MA, USA).
Beyond timing in the auditory brainstem: intensity in the avian cochlear nucleus angularis
K.M. MacLeod and C.E. Carr (College Park, MD, USA).
Neural strategies for optimal processing of sensory signals
L. Maler (Ottawa, ON, Canada).
Coordinate transformations and sensory integration in the detection of spatial orientation and self-motion: from models to experiments
A.M. Green and D.E. Angelaki (Montreal, QC, Canada and St. Louis, MO, USA).
Sensorimotor optimization in higher dimensions
. Tweed (Toronto, ON,USA).
How tightly tuned are network parameters? Insight from computational and experimental studies in small rhythmic motor networks
E. Marder, A.-E. Tobin and R. Grashow (Waltham, MA, USA).
Spatial organization and state-dependent mechanisms for respiratory rhythm and pattern generation
I.A. Rybak, A.P.L. Abdala, S.N. Markin, J.F.R. Paton and J.C. Smith (Philadelphia, PA and Bethesda, MD, USA and Bristol, UK).
Modeling a vertebrate motor system - pattern generation, steering and control of body orientation
S. Grillner, A. Kozlov, P. Dario, C. Stefanini, A. Menciassi, A. Lansner, J. Hellgren Kotaleski (Stockholm, Sweden and Pontedera, Italy).
Modeling the mammalian locomotor CPG: insights from mistakes and perturbations
D.A. McCrea and I.A. Rybak (Winnipeg, MB, Canada and Philadelphia, PA, USA).
The neuromechanical tuning hypothesis
A. Prochazka and S. Yakovenko (Edmonton, AB and Montreal, QC, Canada).
Threshold position control and the principle of minimal interaction in motor actions
A.G. Feldman, V. Goussev, A. Sangole and M.F. Levin (Montreal and Laval, QC, Canada).
Modelling sensorimotor control of human upright stance
T. Mergner (Freiburg, Germany).
Dimensional reduction in sensorimotor systems: a framework for understanding muscle coordination of posture
L.H. Ting (Atlanta, GA, USA).
Primitives, premotor drives and pattern generation: a combined computational and neuroethological perspective
S. Giszter, V. Patil and C. Hart (Philadelphia, PA, USA).
A multi-level approach to understanding upper limb function
I. Kurtzer and S.H. Scott (Kingston, ON, Canada).
How is somatosensory information used to adapt to changes in the mechanical environment?
T.E. Milner, M.R. Hinder and D.W. Franklin (Burnaby, BC, Queensland, Australia and Kyoto, Japan).
Trial-by-trial motor adaptation: a window into elemental neural computation
K.A. Thoroughman, M.S. Fine and J.A. Taylor (Saint Louis, MO, USA).
Towards a computational neuropsychology of action
J.W. Krakauer and R. Shadmehr (New York, NY and Baltimore, MD, USA).
Motor control in a meta-network with attractor dynamics
N.I. Krouvhev and J.F. Kalaska (Montreal, WC, Canada).
Computing movement geometry - a step in sensory-motor transformations
D. Zipser and E. Torres (Pasadena, CA, USA).
Dynamics systems versus optimal control - a unifying view
S. Schaal, P. Mohajerian and A. Ijspeert (Los Angeles, CA, USA, Kyoto, Japan and Lausanne, Switzerland).
The place of 'codes' in nonlinear neurodynamics
W.J. Freeman (Berkeley, CA, USA).
From a representation of behaviour to the concept of cognitive syntax: a theoretical framework
T. Gisiger and M. Kerszberg (Paris, France).
A parallel framework for interactive behaviour
P. Cisek (Montreal, QC, Canada).
Statistical models for neural encoding, decoding, and optimal stimulus design
L. Paninski, J. Pillow and J. Lewi (New York, NY, USA and London, UK).
Probabilistic population codes and the exponential family of distributions
J. Beck, W. Ma, P.E. Latham and A. Pouget (Rochester, NY, USA and London, UK).
On the challenge of learning complex functions
Y. Bengio (Montreal, QC, Canada).
To recognize shapes, first learn to generate images
G.E. Hinton (Toronto, Canada).
「Nielsen BookData」 より