Invariant differential operators for quantum symmetric spaces

著者

    • Letzter, Gail

書誌事項

Invariant differential operators for quantum symmetric spaces

Gail Letzter

(Memoirs of the American Mathematical Society, no. 903)

American Mathematical Society, 2008

大学図書館所蔵 件 / 12

この図書・雑誌をさがす

注記

Includes bibliographical references (p. 89-90)

内容説明・目次

内容説明

This paper studies quantum invariant differential operators for quantum symmetric spaces in the maximally split case. The main results are quantum versions of theorems of Harish-Chandra and Helgason: There is a Harish-Chandra map which induces an isomorphism between the ring of quantum invariant differential operators and the ring of invariants of a certain Laurent polynomial ring under an action of the restricted Weyl group. Moreover, the image of the center under this map is the entire invariant ring if and only if the underlying irreducible symmetric pair is not of four exceptional types. In the process, the author finds a particularly nice basis for the quantum invariant differential operators that provides a new interpretation of difference operators associated to Macdonald polynomials.

目次

Introduction Background and notation A comparison of two root systems Twisted Weyl group actions The Harish-Chandra map Quantum radial components The image of the center Finding invariant elements Symmetric pairs related to type AII Four exceptional cases Appendix: Commonly used notation Bibliography.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA85596310
  • ISBN
    • 9780821841310
  • LCCN
    2008060004
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Providence, R.I.
  • ページ数/冊数
    vi, 90 p.
  • 大きさ
    26 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ