Para-differential calcus and applications to the Cauchy problem for nonlinear systems

Bibliographic Information

Para-differential calcus and applications to the Cauchy problem for nonlinear systems

Guy Métivier

(CRM series, 5)

Edizioni della Normale ; Scuola Normale Superiore Pisa, c2008

Search this Book/Journal
Note

Includes bibliographical references

Description and Table of Contents

Description

The main aim is to present at the level of beginners several modern tools of micro-local analysis which are useful for the mathematical study of nonlinear partial differential equations. The core of these notes is devoted to a presentation of the para-differential techniques, which combine a linearization procedure for nonlinear equations, and a symbolic calculus which mimics or extends the classical calculus of Fourier multipliers. These methods apply to many problems in nonlinear PDE's such as elliptic equations, propagation of singularities, boundary value problems, shocks or boundary layers. However, in these introductory notes, we have chosen to illustrate the theory on two selected and relatively simple examples, which allow becoming familiar with the techniques. They concern the well posed-ness of the Cauchy problem for systems of nonlinear PDE's, firstly hyperbolic systems and secondly coupled systems of Schroedinger equations which arise in various models of wave propagation.

Table of Contents

I. Introduction to Systems - 1. Notations and Examples - 2. Constant Coefficient Systems. Fourier Synthesis - 3. The Method of Symmetrizers.- II. The Para-Differential Calculus - 1. Pseudo-Differential Operators 2. Para-Differential Operators - 3. Symbolic Calculus.-III. Applications - 1. Nonlinear Hyperbolic systems - 2. Systems of Schroedinger Equations.

by "Nielsen BookData"

Related Books: 1-1 of 1
  • CRM series

    Edizioni della Normale , Scuola normale superiore

Details
  • NCID
    BA86596564
  • ISBN
    • 9788876423291
  • Country Code
    it
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Pisa
  • Pages/Volumes
    xi, 140 p.
  • Size
    24 cm
  • Parent Bibliography ID
Page Top