Geometric flows

著者

書誌事項

Geometric flows

edited by Huai-Dong Cao and Shing-Tung Yau

(Surveys in differential geometry : supplement to the Journal of differential geometry, v. 12)

International Press, 2010, c2008

  • : hard
  • : pbk

大学図書館所蔵 件 / 31

この図書・雑誌をさがす

注記

Bibliography: p. 346-347

"Previously published in 2008 under ISBN 1-57146-118-6 (clothbound)."--T.p. verso

内容説明・目次

内容説明

Geometric flows are non-linear parabolic differential equations which describe the evolution of geometric structures. Inspired by Hamilton's Ricci flow, the field of geometric flows has seen tremendous progress in the past 25 years and yields important applications to geometry, topology, physics, nonlinear analysis, and so on. Of course, the most spectacular development is Hamilton's theory of Ricci flow and its application to three-manifold topology, including the Hamilton-Perelman proof of the Poincare conjecture. This twelfth volume of the annual Surveys in Differential Geometry examines recent developments on a number of geometric flows and related subjects, such as Hamilton's Ricci flow, formation of singularities in the mean curvature flow, the Kahler-Ricci flow, and Yau's uniformization conjecture.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA86609214
  • ISBN
    • 9781571462176
    • 9781571461827
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Sommerville, Mass.
  • ページ数/冊数
    v, 347 p.
  • 大きさ
    26 cm
  • 件名
  • 親書誌ID
ページトップへ