Information geometry : near randomness and near independence
著者
書誌事項
Information geometry : near randomness and near independence
(Lecture notes in mathematics, 1953)
Springer, c2008
大学図書館所蔵 全65件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 235-246) and index
内容説明・目次
内容説明
The main motivation for this book lies in the breadth of applications in which a statistical model is used to represent small departures from, for example, a Poisson process. Our approach uses information geometry to provide a c- mon context but we need only rather elementary material from di?erential geometry, information theory and mathematical statistics. Introductory s- tions serve together to help those interested from the applications side in making use of our methods and results. We have available Mathematica no- books to perform many of the computations for those who wish to pursue their own calculations or developments. Some 44 years ago, the second author ?rst encountered, at about the same time, di?erential geometry via relativity from Weyl's book [209] during - dergraduate studies and information theory from Tribus [200, 201] via spatial statistical processes while working on research projects at Wiggins Teape - searchandDevelopmentLtd-cf. theForewordin[196]and[170,47,58].
H- ing started work there as a student laboratory assistant in 1959, this research environment engendered a recognition of the importance of international c- laboration, and a lifelong research interest in randomness and near-Poisson statistical geometric processes, persisting at various rates through a career mainly involved with global di?erential geometry. From correspondence in the 1960s with Gabriel Kron [4, 124, 125] on his Diakoptics, and with Kazuo Kondo who in?uenced the post-war Japanese schools of di?erential geometry and supervised Shun-ichi Amari's doctorate [6], it was clear that both had a much wider remit than traditionally pursued elsewhere.
目次
Mathematical Statistics and Information Theory.- to Riemannian Geometry.- Information Geometry.- Information Geometry of Bivariate Families.- Neighbourhoods of Poisson Randomness, Independence, and Uniformity.- Cosmological Voids and Galactic Clustering.- Amino Acid Clustering.- Cryptographic Attacks and Signal Clustering.- Stochastic Fibre Networks.- Stochastic Porous Media and Hydrology.- Quantum Chaology.
「Nielsen BookData」 より