The topological dynamics of Ellis actions
Author(s)
Bibliographic Information
The topological dynamics of Ellis actions
(Memoirs of the American Mathematical Society, no. 913)
American Mathematical Society, 2008
Available at 12 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. 145-147) and index
Description and Table of Contents
Description
An Ellis semigroup is a compact space with a semigroup multiplication which is continuous in only one variable. An Ellis action is an action of an Ellis semigroup on a compact space such that for each point in the space the evaluation map from the semigroup to the space is continuous. At first the weak linkage between the topology and the algebra discourages expectations that such structures will have much utility. However, Ellis has demonstrated that these actions arise naturally from classical topological actions of locally compact groups on compact spaces and provide a useful tool for the study of such actions. In fact, via the apparatus of the enveloping semigroup the classical theory of topological dynamics is subsumed by the theory of Ellis actions. The authors' exposition describes and extends Ellis' theory and demonstrates its usefulness by unifying many recently introduced concepts related to proximality and distality. Moreover, this approach leads to several results which are new even in the classical setup.
Table of Contents
- Introduction
- Semigroups, monoids and their actions
- Ellis semigroups and Ellis actions
- Continuity conditions
- Applications using ideals
- Classical dynamical systems
- Classical actions: The group case
- Classical actions: The Abelian case
- Iterations of continuous maps
- Table
- Bibliography
- Index
by "Nielsen BookData"