Distributions and operators
著者
書誌事項
Distributions and operators
(Graduate texts in mathematics, 252)
Springer, c2009
大学図書館所蔵 全66件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 451-456) and index
内容説明・目次
内容説明
This textbook gives an introduction to distribution theory with emphasis on applications using functional analysis. In more advanced parts of the book, pseudodi?erential methods are introduced. Distributiontheoryhasbeen developedprimarilytodealwithpartial(and ordinary) di?erential equations in general situations. Functional analysis in, say, Hilbert spaces has powerful tools to establish operators with good m- ping properties and invertibility properties. A combination of the two allows showing solvability of suitable concrete partial di?erential equations (PDE). When partial di?erential operators are realized as operators in L (?) for 2 n anopensubset?ofR ,theycomeoutasunboundedoperators.Basiccourses infunctionalanalysisareoftenlimitedtothestudyofboundedoperators,but we here meet the necessityof treating suitable types ofunbounded operators; primarily those that are densely de?ned and closed.
Moreover, the emphasis in functional analysis is often placed on selfadjoint or normal operators, for which beautiful results can be obtained by means of spectral theory, but the cases of interest in PDE include many nonselfadjoint operators, where diagonalizationbyspectraltheoryisnotveryuseful.Weincludeinthisbooka chapter on unbounded operatorsin Hilbert space (Chapter 12),where classes of convenient operators are set up, in particular the variational operators, including selfadjoint semibounded cases (e.g., the Friedrichs extension of a symmetric operator), but with a much wider scope. Whereas the functional analysis de?nition of the operators is relatively clean and simple, the interpretation to PDE is more messy and complicated.
目次
Distributions and derivatives.- Motivation and overview.- Function spaces and approximation.- Distributions. Examples and rules of calculus.- Extensions and applications.- Realizations and Sobolev spaces.- Fourier transformation of distributions.- Applications to differential operators. The Sobolev theorem.- Pseudodifferential operators.- Pseudodifferential operators on open sets.- Pseudodifferential operators on manifolds, index of elliptic operators.- Boundary value problems.- Boundary value problems in a constant-coefficient case.- Pseudodifferential boundary operators.- Pseudodifferential methods for boundary value problems.- Topics on Hilbert space operators.- Unbounded linear operators.- Families of extensions.- Semigroups of operators.
「Nielsen BookData」 より