Applications in mathematical physics
著者
書誌事項
Applications in mathematical physics
(International mathematical series, v. 10 . Sobolev Spaces in Mathematics ; 3)
Springer, c2009
大学図書館所蔵 全23件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Victor Isakov This volume contains various results on partial di?erential equations where Sobolev spaces are used. Their selection is motivated by the research int- ests of the editor and the geographicallinks to the places where S. L. Sobolev worked and lived: St. Petersburg, Moscow, and Novosibirsk. Most of the papers are written by leading experts in control theory and inverse pr- lems. Another reason for the selection is a strong link to applied areas. In my opinion, control theory and inverse problems are main areas of di?er- tial equations of importance for some branches of contemporary science and engineering. S. L. Sobolev, as many great mathematicians, was very much motivated by applications. He did not distinguished between pure and - plied mathematics, but, in his own words, between "good mathematics and bad mathematics. " While he possessed a brilliant analytical technique, he most valued innovative ideas, solutions of deep conceptual problems, and not mathematical decorations, perfecting exposition, and "generalizations. " S. L.
Sobolev himself never published papers on inverse problems or c- trol theory, but he was very much aware of the state of art and he monitored research on inverse problems. In particular, in his lecture at a Conference on Di?erentialEquationsin1954(found inSobolev'sarchiveandmadeavailable to me by Alexander Bukhgeim), he outlined main inverse problems in g- physics:theinverseseismicproblem,theelectromagneticprospecting,andthe inverse problem of gravimetry.
目次
Geometrization of Rings as a Method for Solving Inverse Problems, M. Belishev.- The Ginzburg-Landau Equations for Superconductivity with Random Fluctuations, A. Fursikov et al.- Carleman Estimates with Second Large Parameter for Second Order Operators, V. Isakov, N. Kim.- Sharp Spectral Asymptotics for Dirac Energy, V. Ivrii.- Linear Hyperbolic and Petrowski Type PDEs with Continuous Boundary Control - Boundary Observation Open Loop Map: Implication on Nonlinear Boundary Stabilization with Optimal Decay Rates, I. Lasiecka, R. Triggiani.- Uniform Asymptotics of Green's Kernels for Mixed and Neumann Problems in Domains with Small Holes and Inclusions, V. Maz'ya, A. Movchan.- Finsler Structures and Wave Propagation, M. Taylor.
「Nielsen BookData」 より