Index theory, eta forms, and Deligne cohomology
著者
書誌事項
Index theory, eta forms, and Deligne cohomology
(Memoirs of the American Mathematical Society, no. 928)
American Mathematical Society, 2009
大学図書館所蔵 件 / 全12件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 115-116) and index
内容説明・目次
内容説明
This paper sets up a language to deal with Dirac operators on manifolds with corners of arbitrary co-dimension. In particular the author develops a precise theory of boundary reductions. The author introduces the notion of a taming of a Dirac operator as an invertible perturbation by a smoothing operator. Given a Dirac operator on a manifold with boundary faces the author uses the tamings of its boundary reductions in order to turn the operator into a Fredholm operator. Its index is an obstruction against extending the taming from the boundary to the interior. In this way he develops an inductive procedure to associate Fredholm operators to Dirac operators on manifolds with corners and develops the associated obstruction theory.
「Nielsen BookData」 より