Normal forms and bifurcation of planar vector fields
Author(s)
Bibliographic Information
Normal forms and bifurcation of planar vector fields
Cambridge University Press, 2008
- : pbk
Available at 5 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"This digitally printed version 2008"--T.p. verso
"Paperback re-issue"--Back cover
Includes bibliographical references (p. 452-467) and index
Description and Table of Contents
Description
This book is concerned with the bifurcation theory, the study of the changes in the structures of the solution of ordinary differential equations as parameters of the model vary. The theory has developed rapidly over the past two decades. Chapters 1 and 2 of the book introduce two systematic methods of simplifying equations: centre manifold theory and normal form theory, by which the dimension of equations may be reduced and the forms changed so that they are as simple as possible. Chapters 3-5 of the book study in considerable detail the bifurcation of those one- or two-dimensional equations with one, two or several parameters. This book is aimed at mathematicians and graduate students interested in dynamical systems, ordinary differential equations and/or bifurcation theory. The basic knowledge required by this book is advanced calculus, functional analysis and qualitative theory of ordinary differential equations.
Table of Contents
- Preface
- 1. Center manifolds
- 2. Normal forms
- 3. Codimension one bifurcations
- 4. Codimension two bifurcations
- 5. Bifurcations with codimension higher that two
- Bibliography
- Index.
by "Nielsen BookData"