Gröbner bases, coding, and cryptography
著者
書誌事項
Gröbner bases, coding, and cryptography
Springer, c2009
大学図書館所蔵 全23件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Other editors: Teo Mora, Ludovic Perret, Shojiro Sakata, Carlo Traverso
Includes bibliographical references
内容説明・目次
内容説明
Coding theory and cryptography allow secure and reliable data transmission, which is at the heart of modern communication. Nowadays, it is hard to find an electronic device without some code inside. Groebner bases have emerged as the main tool in computational algebra, permitting numerous applications, both in theoretical contexts and in practical situations.
This book is the first book ever giving a comprehensive overview on the application of commutative algebra to coding theory and cryptography. For example, all important properties of algebraic/geometric coding systems (including encoding, construction, decoding, list decoding) are individually analysed, reporting all significant approaches appeared in the literature. Also, stream ciphers, PK cryptography, symmetric cryptography and Polly Cracker systems deserve each a separate chapter, where all the relevant literature is reported and compared. While many short notes hint at new exciting directions, the reader will find that all chapters fit nicely within a unified notation.
目次
Part I: Invited Talks
1 Teo Mora: Groebner technology,
2 Teo Mora: The FGLM problem and Moeller's algorithm on zero-dimensional ideals,
3 Daniel Augot, Emanuele Betti, Emmanuela Orsini: An introduction to linear and cyclic codes,
4 Teo Mora, Emmanuela Orsini: Decoding cyclic codes: the Cooper philosophy,
5 Douglas A. Leonard: A tutorial on AG code construction from a Groebner basis perspective,
6 John Little: Automorphisms and encoding of AG and order domain codes,
7 Olav Geil: Algebraic geometry codes from order domains,
8 Shojiro Sakata: The BMS algorithm,
9 Shojiro Sakata: The BMS Algorithm and decoding of algebraic geometry codes,
10 Douglas A. Leonard: A tutorial on AG code decoding from a Groebner basis perspective,
11 Eleonora Guerrini,Anna Rimoldi: FGLM-like decoding: from Fitzpatrick's approach to recent developments,
12 Marcus Greferath: An introduction to ring-linear coding theory,
13 Eimear Byrne, Teo Mora: Groebner bases over commutative Artin chain rings and applications to coding theory,
14 Olivier Billet and Jintai Ding: Overview of cryptanalysis techniques in multivariate public key cryptography
15 Francoise Levy-dit-Vehel, Maria Grazia Marinari, Ludovic Perret, Carlo Traverso: A survey on Polly-Cracker systems,
16 Carlos Cid, Ralf Weinmann: Block ciphers: algebraic cryptanalysis and Groebner bases,
17 Frederik Armknecht, Gwenole Ars: Algebraic attacks on stream ciphers with Groebner bases, Part II: Notes 1 Kristine Lally: Canonical representation of quasicyclic codes using Groebner basis theory,
2 Marta Giorgetti: About the nth-root codes,
3 Stanislav Bulygin, Ruud Pellikaan: Decoding linear error-correcting codes up to half the minimum distance withGroebner bases,
4 Eleonora Guerrini, Emmanuela Orsini, Ilaria Simonetti: Groebner bases for the distance distribution of systematic codes,
5 Jon-Lark Kim: A Prize Problem in Coding Theory,
6 Mijail Borges-Quintana, Miguel A. Borges-Trenard, Edgar Martinez-Moro: An application of Moeller's Algorithm to Coding Theory,
7 Edgar Martinez-Moro, Diego Ruano: Mattson Solomon transform and algebra codes,
8 Peter Beelen, Kristian Brander: Decoding folded Reed-Solomon codes using Hensel lifting,
9 Daniel Augot, Michael Stepanov: A note on the generalisation of the Guruswami-Sudan list decoding
10 Gretchen L. Matthews: Viewing multipoint codes as subcodes of one-point codes
11 Heide Gluesing-Luerssen, Barbara Langfeld, Wiland Schmale: A short introduction to cyclic convolutional codes,
12 Ilaria Simonetti: On the non-linearity of Boolean functions
13 Danilo Gligoroski, Vesna Dimitrova, Smile Markovski: Quasigroups as Boolean functions, their equation systems and Groebner bases
14 Danilo Gligoroski, Smile Markovski, Svein J. Knapskog: A new measure to estimate pseudo-randomness of Boolean functions and relations with Groebner bases
15 Ryutaroh Matsumoto: Radical computation for small characteristics
「Nielsen BookData」 より