Machine learning for spatial environmental data : theory, applications and software
著者
書誌事項
Machine learning for spatial environmental data : theory, applications and software
(Environmental science, Environmental engineering)
EPFL Press , CRC Press, c2009
- : EPFL Press
- : CRC Press
大学図書館所蔵 全5件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical reference (p. [347]-371) and index
Title of CD-ROM: Machine learning office : software for environmental spatial data analysis
内容説明・目次
- 巻冊次
-
: CRC Press ISBN 9780849382376
内容説明
This book discusses machine learning algorithms, such as artificial neural networks of different architectures, statistical learning theory, and Support Vector Machines used for the classification and mapping of spatially distributed data. It presents basic geostatistical algorithms as well. The authors describe new trends in machine learning and their application to spatial data. The text also includes real case studies based on environmental and pollution data. It includes a CD-ROM with software that will allow both students and researchers to put the concepts to practice.
目次
PREFACE
LEARNING FROM GEOSPATIAL DATA
Problems and important concepts of machine learning
Machine learning algorithms for geospatial data
Contents of the book Software description
Short review of the literature
EXPLORATORY SPATIAL DATA ANALYSIS PRESENTATION OF DATA AND CASE STUDIES Exploratory spatial data analysis
Data pre-processing
Spatial correlations: Variography
Presentation of data
k-Nearest neighbours algorithm: a benchmark model for regression and classification
Conclusions to chapter
GEOSTATISTICS
Spatial predictions
Geostatistical conditional simulations
Spatial classification
Software
Conclusions
ARTIFICIAL NEURAL NETWORKS
Introduction
Radial basis function neural networks
General regression neural networks
Probabilistic neural networks
Self-organising maps
Gaussian mixture models and mixture density network
Conclusions
SUPPORT VECTOR MACHINES AND KERNEL METHODS
Introduction to statistical learning theory
Support vector classification
Spatial data classification with SVM
Support vector regression
Advanced topics in kernel methods
REFERENCES
INDEX
- 巻冊次
-
: EPFL Press ISBN 9782940222247
内容説明
The book presents the state of the art in machine learning algorithms (artificial neural networks of different architectures, support vector machines, etc.) as applied to the classification and mapping of spatially distributed environmental data. Basic geostatistical algorithms are presented as well. New trends in machine learning and their application to spatial data are given, and real case studies based on environmental and pollution data are carried out. The book provides a CD-ROM with the Machine Learning Office software, including sample sets of data, that will allow both students and researchers to put the concepts rapidly to practice.
「Nielsen BookData」 より