Fundamentals, materials and their applications
著者
書誌事項
Fundamentals, materials and their applications
(Solid state electrochemistry, 1)
Wiley-VCH, c2009
大学図書館所蔵 全13件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
内容説明・目次
内容説明
The only comprehensive handbook on this important and rapidly developing topic combines fundamental information with a brief overview of recent advances in solid state electrochemistry, primarily targeting specialists working in this scientific field.
Particular attention is focused on the most important developments performed during the last decade, methodological and theoretical aspects of solid state electrochemistry, as well as practical applications. The highly experienced editor has included chapters with critical reviews of theoretical approaches, experimental methods and modeling techniques, providing definitions and explaining relevant terminology as necessary. Several other chapters cover all the key groups of the ion-conducting solids important for practice, namely cationic, protonic, oxygen-anionic and mixed conductors, but also conducting polymer and hybrid materials. Finally, the whole is rounded off by brief surveys of advances in the fields of fuel cells, solid-state batteries, electrochemical sensors, and other applications of ion-conducting solids.
Due to the very interdisciplinary nature of this topic, this is of great interest to material scientists, polymer chemists, physicists, and industrial scientists, too.
目次
Preface xv
List of Contributors xix
1 Fundamentals, Applications, and Perspectives of Solid-State Electrochemistry: A Synopsis 1
Joachim Maier
1.1 Introduction 1
1.2 Solid versus Liquid State 2
1.3 Thermodynamics and Kinetics of Charge Carriers 4
1.4 Usefulness of Electrochemical Cells 6
1.5 Materials Research Strategies: Bulk Defect Chemistry 9
1.6 Materials Research Strategy: Boundary Defect Chemistry 11
1.7 Nanoionics 11
References 12
2 Superionic Materials: Structural Aspects 15
Stephen Hull
2.1 Overview 15
2.2 Techniques 16
2.2.1 X-Ray and Neutron Diffraction 16
2.2.2 Extended X-Ray Absorption Fine Structure 17
2.2.3 Nuclear Magnetic Resonance 18
2.2.4 Computational Methods 18
2.3 Families of Superionic Conductors 19
2.3.1 Silver and Copper Ion Conductors 19
2.3.1.1 Silver Iodide (AgI) 20
2.3.1.2 Copper Iodide (CuI) 21
2.3.1.3 Other Ag+ and Cu+ Halides 21
2.3.1.4 Ag+ Chalcogenides 22
2.3.1.5 Cu+ Chalcogenides 23
2.3.1.6 Silver Sulfur Iodide (Ag3SI) 23
2.3.1.7 Ternary AgI-MI2 Compounds 24
2.3.1.8 Ternary AgI-MI Compounds 24
2.3.1.9 Ternary Derivatives of Ag2S 24
2.3.2 Fluorite-Structured Compounds 24
2.3.2.1 The Fluorite Structure 25
2.3.2.2 Halide Fluorites 25
2.3.2.3 Lead Tin Fluoride (PbSnF4) 26
2.3.2.4 Anion-Excess Fluorites 26
2.3.2.5 Oxide Fluorites 27
2.3.2.6 Anion-Deficient Fluorites 28
2.3.2.7 Bi2O3 29
2.3.2.8 Antifluorites 29
2.3.2.9 The ''Rotator'' Phases 30
2.3.3 Pyrochlore and Spinel-Structured Compounds 30
2.3.3.1 The Pyrochlore Structure 30
2.3.3.2 Oxide Pyrochlores 30
2.3.3.3 The Spinel Structure 31
2.3.3.4 Halide Spinels (LiM2Cl4, etc.) 31
2.3.3.5 Oxide Spinels: Li2MnO4 32
2.3.4 Perovskite-Structured Compounds 32
2.3.4.1 The Perovskite Structure 32
2.3.4.2 Halide Perovskites 33
2.3.4.3 Cryolite (Na3AlF6) 33
2.3.4.4 Oxide Perovskites 34
2.3.4.5 Brownmillerites (Ba2In2O5) 35
2.3.4.6 BIMEVOXs 35
2.4 Current Status and Future Prospects 35
2.5 Conclusions 36
References 37
3 Defect Equilibria in Solids and Related Properties: An Introduction 43
Vladimir A. Cherepanov, Alexander N. Petrov, and Andrey Yu. Zuev
Editorial Preface 43
Vladislav Kharton
3.1 Introduction 44
3.2 Defect Structure of Solids: Thermodynamic Approach 44
3.2.1 Selected Definitions, Classification, and Notation of Defects 44
3.2.2 Defect Formation and Equilibria 46
3.2.3 Formation of Stoichiometric (Inherent) Defects 47
3.2.3.1 Schottky Defects 47
3.2.3.2 Frenkel Defects 47
3.2.3.3 Intrinsic Electronic Disordering 47
3.2.3.4 Ionization of Defects 48
3.2.4 Influence of Temperature 48
3.2.5 Nonstoichiometry: Equilibria with Gaseous Phase 51
3.2.6 Impurities and their Effects on Defect Equilibria 54
3.2.7 Crystallographic Aspects of Defect Interaction: Examples of Defect Ordering Phenomena 55
3.2.8 Thermal and Defects-Induced (Chemical) Expansion of Solids 57
3.3 Basic Relationships Between the Defect Equilibria and Charge Transfer in Solids 59
3.3.1 Phenomenological Equations 59
3.3.2 Mass Transfer in Crystals 60
3.3.3 Electrical Conductivity. Transport under a Temperature Gradient 62
3.3.4 Electrochemical Transport 63
3.3.4.1 Mass and Charge Transport under the Chemical Potential Gradient: Electrolytic Permeation 63
3.3.4.2 Charge Transfer under Temperature Gradient and Seebeck Coefficient: Selected Definitions 66
3.4 Examples of Functional Materials with Different Defect Structures 69
3.4.1 Solid Electrolytes 70
3.4.2 Examples of Defect Chemistry in Electronic and Mixed Conductors 75
References 77
4 Ion-Conducting Nanocrystals: Theory, Methods, and Applications 79
Alan V. Chadwick and Shelley L.P. Savin
4.1 Introduction 79
4.2 Theoretical Aspects 82
4.2.1 Space-Charge Layer 82
4.2.2 Surface Texture and Mismatch at Surfaces 85
4.3 Applications and Perspectives 85
4.3.1 Nanoionic Materials as Gas Sensors 86
4.3.2 Nanoionics as Battery Materials 90
4.3.3 Nanoionic Materials in Fuel Cells 92
4.4 Experimental Methods 94
4.4.1 Preparation of Nanoionic Materials 94
4.4.2 Determination of Particle Size and Dispersion 96
4.4.2.1 Transmission Electron Microscopy 96
4.4.2.2 X-Ray Based Methods 97
4.4.3 Characterization of Microstructure 98
4.4.4 Transport Measurements 102
4.4.4.1 Tracer Diffusion 103
4.4.4.2 NMR Spectroscopy Methods 104
4.4.4.2.1 Relaxation Time Experiments 105
4.4.4.2.2 Field Gradient Methods 107
4.4.4.2.3 Creep Measurements 108
4.5 Review of the Current Experimental Data and their Agreement with Theory 110
4.5.1 Microstructure 110
4.5.2 Transport 111
4.5.2.1 Simple Halides 112
4.5.2.1.1 Calcium Fluoride 112
4.5.2.1.2 Calcium Fluoride-Barium Fluoride 113
4.5.2.2 Oxides 114
4.5.2.2.1 Lithium Niobate 114
4.5.2.2.2 Zirconia 115
4.5.2.2.3 Ceria 119
4.5.2.2.4 Titania 121
4.6 Overview and Areas for Future Development 122
References 124
5 The Fundamentals and Advances of Solid-State Electrochemistry: Intercalation (Insertion) and Deintercalation (Extraction) in Solid-State Electrodes 133
Sung-Woo Kim, Seung-Bok Lee, and Su-Il Pyun
5.1 Introduction 133
5.2 Thermodynamics of Intercalation and Deintercalation 135
5.2.1 Simple Lattice Gas Model 136
5.2.2 Consideration of Ionic Interaction Using the Lattice Gas Model 137
5.2.3 Application to Lithium Intercalation/Deintercalation 138
5.2.3.1 Application of Lattice Gas Model with Mean Field Approximation 138
5.2.3.2 Application of Lattice Gas Model with Monte Carlo Simulation 142
5.2.3.3 Application of Ab Initio (First Principles) Method 149
5.3 Kinetics of Intercalation and Deintercalation 149
5.3.1 Diffusion-Controlled Transport 150
5.3.2 Cell-Impedance-Controlled Transport 151
5.3.2.1 Non-Cottrell Behavior 151
5.3.2.2 (Quasi-) Current Plateau 152
5.3.2.3 Linear Relationship Between Current and Electrode Potential 155
5.3.3 Numerical Calculations 159
5.3.3.1 Governing Equation and Boundary Conditions 159
5.3.3.2 Calculation Procedure of Cell-Impedance-Controlled Current Transients 159
5.3.3.3 Theoretical Current Transients and their Comparison with Experimental Values 160
5.3.3.4 Extension of Cell-Impedance-Controlled Lithium Transport Concept to the Disordered Carbon Electrode 160
5.3.4 Statistical Approach with Kinetic Monte Carlo Simulation 166
5.3.4.1 Calculation Procedure of Cell-Impedance-Controlled Current Transients with Kinetic Monte Carlo Method 166
5.3.4.2 Theoretical Current Transients and their Comparison with Experimental Data 168
5.4 Methodological Overview 171
5.4.1 Galvanostatic Intermittent Titration Technique (GITT) in Combination with EMF-Temperature Measurement 171
5.4.2 Electrochemical AC-Impedance Spectroscopy 172
5.4.3 Potentiostatic Current Transient Technique 172
5.5 Concluding Remarks 173
References 174
6 Solid-State Electrochemical Reactions of Electroactive Microparticles and Nanoparticles in a Liquid Electrolyte Environment 179
Michael Hermes and Fritz Scholz
6.1 Introduction 179
6.2 Methodological Aspects 181
6.3 Theory 182
6.3.1 General Theoretical Treatment 182
6.3.2 Voltammetry of Microparticle-Modified Electrodes 187
6.3.2.1 Adsorbed (Surface-)Electroactive Microparticles on Solid Electrodes 187
6.3.2.2 Voltammetry at Random Microparticle Arrays 192
6.3.2.2.1 The Diffusion Domain Approach 193
6.3.2.2.2 The Diffusion Categories 194
6.3.2.2.3 Voltammetric Sizing 200
6.3.2.3 Voltammetry at Regularly Distributed Microelectrode Arrays (Microarrays, Microbands) 201
6.3.2.4 The Role of Dissolution in Voltammetry of Microparticles 202
6.3.3 Voltammetric Stripping of Electroactive Microparticles from a Solid Electrode 204
6.3.3.1 Microparticles Within a Carbon Paste Electrode 204
6.3.3.2 Microparticles on a Solid Electrode Surface 205
6.3.4 Voltammetry of Single Microparticles (Microcrystals, Nanocrystals) on Solid Electrodes 209
6.3.4.1 Voltammetric Sizing of a Microparticle Sphere 211
6.4 Examples and Applications 212
6.4.1 Analytical Studies of Objects of Art 212
6.4.2 Metal Oxide and Hydroxide Systems with Poorly Crystalline Phases 213
6.4.3 Electrochemical Reactions of Organometallic Microparticles 215
6.4.4 Selected Other Applications 219
References 221
7 Alkali Metal Cation and Proton Conductors: Relationships between Composition, Crystal Structure, and Properties 227
Maxim Avdeev, Vladimir B. Nalbandyan, and Igor L. Shukaev
7.1 Principles of Classification, and General Comments 227
7.1.1 Physical State 227
7.1.2 Type of Disorder 228
7.1.3 Type of Charge Carrier 231
7.1.4 Connectivity of the Rigid Lattice 231
7.1.5 Connectivity of the Migration Paths 232
7.1.6 Stability to Oxidation and Reduction 232
7.1.7 A Comment on the Activation Energy 233
7.2 Crystal-Chemistry Factors Affecting Cationic Conductivity 233
7.2.1 Structure Type 233
7.2.2 Bottleneck Concept and Size Effects 235
7.2.3 Site Occupation Factors 238
7.2.4 Electronegativity, Bond Ionicity, and Polarizability 238
7.3 Crystal Structural Screening and Studies of Conduction Paths 239
7.3.1 Topological Analysis with Voronoi Tessellation 239
7.3.2 Topological Analysis with Bond-Valence Maps 241
7.3.3 Static First-Principles Calculations and Molecular Dynamics Modeling 242
7.3.4 Analysis of Diffraction Data with Maximum Entropy Method 245
7.4 Conductors with Large Alkali Ions 247
7.4.1 / "-Alumina, / "-Gallates and / "-Ferrites 247
7.4.2 Nasicon Family 248
7.4.3 Sodium Rare-Earth Silicates 251
7.4.4 Structures Based on Brucite-Like Octahedral Layers 251
7.4.5 Cristobalite-Related Tetrahedral Frameworks 252
7.4.6 Other Materials 253
7.5 Lithium Ion Conductors 255
7.5.1 General Comments 255
7.5.2 Garnet-Related Mixed Frameworks of Oxygen Octahedra and Twisted Cubes 255
7.5.3 Mixed Frameworks of Oxygen Octahedra and Tetrahedra 257
7.5.4 Octahedral Framework and Layered Structures 258
7.5.5 Structures Based on Isolated Tetrahedral Anions 259
7.5.6 Structures with Isolated Monatomic Anions 260
7.5.7 Other Structures 262
7.6 Proton Conductors 262
7.6.1 General Remarks 262
7.6.2 Low-Temperature Proton Conductors: Acids and Acid Salts 265
7.6.3 High-Temperature Proton Conductors: Ceramic Oxides 266
7.6.4 Intermediate-Temperature Proton Conductors 268
References 270
8 Conducting Solids: In the Search for Multivalent Cation Transport 279
Nobuhito Imanaka and Shinji Tamura
Editorial Preface 279
Vladislav Kharton
8.1 Introduction 280
8.2 Analysis of Trivalent Cation Transport 281
8.2.1 / "-Alumina 282
8.2.2 -Alumina-Related Materials 285
8.2.3 Perovskite-Type Structures 286
8.2.4 Sc2(WO4)3-Type Structures 287
8.2.5 NASICON-Type Structures 293
8.3 Search for Tetravalent Cation Conductors 295
References 297
9 Oxygen Ion-Conducting Materials 301
Vladislav V. Kharton, Fernando M.B. Marques, John A. Kilner,and Alan Atkinson
9.1 Introduction 301
9.2 Oxygen Ionic Transport in Acceptor-Doped Oxide Phases: Relevant Trends 302
9.3 Stabilized Zirconia Electrolytes 307
9.4 Doped Ceria 309
9.5 Anion Conductors Based on Bi2O3 310
9.6 Transport Properties of Other Fluorite-Related Phases: Selected Examples 313
9.7 Perovskite-Type LnBO3 (B = Ga, Al, In, Sc, Y) and their Derivatives 314
9.8 Perovskite-Related Mixed Conductors: A Short Overview 318
9.9 La2Mo2O9-Based Electrolytes 324
9.10 Solid Electrolytes with Apatite Structure 324
References 326
10 Polymer and Hybrid Materials: Electrochemistry and Applications 335
Danmin Xing and Baolian Yi
10.1 Introduction 335
10.2 Fundamentals 336
10.2.1 The Proton-Exchange Membrane Fuel Cell (PEMFC) 336
10.2.2 Proton-Exchange Membranes for Fuel Cells 337
10.2.3 Membrane Characterization 338
10.2.3.1 Electrochemical Parameters 338
10.2.3.2 Physical Properties 338
10.2.3.3 Evaluation of Durability 338
10.3 Fluorinated Ionomer Membranes 339
10.3.1 Perfluorosulfonate Membranes 339
10.3.2 Partially Fluorosulfonated Membranes 341
10.3.3 Reinforced Composite Membranes 342
10.3.3.1 PFSA/PTFE Composite Membranes 342
10.3.3.2 PFSA/CNT Composite Membranes 343
10.3.4 Hybrid Organic-Inorganic Membranes 344
10.3.4.1 Hygroscopic Material/PFSA Composite Membranes 345
10.3.4.2 Catalyst Material/PFSA Composite Membranes 345
10.3.4.3 Heteropolyacid/PFSA Composite Membranes 346
10.3.4.4 Self-Humidifying Reinforced Composite Membranes 346
10.4 Non-Fluorinated Ionomer Membranes 347
10.4.1 Materials, Membranes, and Characterization 347
10.4.1.1 Post-Sulfonated Polymers 347
10.4.1.2 Direct Polymerization from the Sulfonated Monomers 349
10.4.1.3 Microstructures and Proton Transportation 351
10.4.1.4 Durability Issues 351
10.4.2 Reinforced Composite Membranes 352
10.4.3 Hybrid Organic-Inorganic Membranes 353
10.5 High-Temperature PEMs 354
10.5.1 Acid-Doped Polybenzimidazole 354
10.5.2 Nitrogen-Containing Heterocycles 356
10.5.3 Room-Temperature Ionic Liquids 357
10.5.4 Inorganic Membranes: A Brief Comparison 358
10.6 Conclusions 358
References 359
11 Electrochemistry of Electronically Conducting Polymers 365
Mikhael Levi and Doron Aurbach
11.1 Introduction 365
11.2 Solid Organic and Inorganic Electrochemically Active Materials for Galvanic Cells Operating at Moderate Temperatures 366
11.2.1 Molecular, Low-Dimensional CT Complexes and -Conjugated Organic Oligomers 366
11.2.2 Electroactive Solids and Polymeric Films with Mixed Electronic-Ionic Conductivity 369
11.2.2.1 Inorganic -Conjugated Polymers and Polymer-Like Carbonaceous Materials 369
11.2.2.2 Organic -Conjugated Polymers 370
11.2.2.3 Conventional Redox-Polymers 370
11.2.2.4 Inorganic Ion-Insertion (Intercalation) Compounds 370
11.3 General Features of Doping-Induced Changes in -Conjugated Polymers 371
11.3.1 The Electronic Band Diagram of ECP as a Function of Doping Level 371
11.3.2 The Effect of Morphology on the Conductivity of the Polymeric Films 373
11.3.3 Electrochemical Synthesis and Doping 374
11.3.3.1 Selection of Suitable Electrolyte Solutions 374
11.3.3.2 A Short Survey on In Situ Techniques used for Studies of Mechanisms of Electrochemical Doping of -Conjugated Polymers 375
11.3.3.3 Mechanisms of Electrochemical Synthesis of Conducting Polymer Films 377
11.3.3.4 Dynamics of the Micromorphological Changes in ECP Films as a Function of their Doping Level 379
11.3.3.5 The Maximum Attainable Doping Levels and the Conductivity Windows 380
11.3.3.6 Charge Trapping in n-Doped Conducting Polymers 385
11.4 The Thermodynamics and Kinetics of Electrochemical Doping of Organic Polymers and Ion-Insertion into Inorganic Host Materials 387
11.5 Concluding Remarks 393
References 394
12 High-Temperature Applications of Solid Electrolytes: Fuel Cells, Pumping, and Conversion 397
Jacques Fouletier and Veronique Ghetta
12.1 Introduction 397
12.2 Characteristics of a Current-Carrying Electrode on an Oxide Electrolyte 399
12.3 Operating Modes 402
12.3.1 Electrochemical Pumping 403
12.3.2 Fuel Cell Mode 403
12.3.3 The NEMCA Effect 406
12.3.4 Electrolyte Reduction 407
12.4 Cell Materials 408
12.4.1 Electrolytes 408
12.4.1.1 Oxide Electrolytes 408
12.4.1.2 Proton-Conducting Electrolytes 409
12.4.2 Electrodes 410
12.4.2.1 Cathode 410
12.4.2.2 Anode 411
12.5 Cell Designs 411
12.6 Examples of Applications 413
12.6.1 Oxygen and Hydrogen Pumping, Water Vapor Electrolysis 414
12.6.2 Pump-Sensor Devices 414
12.6.2.1 Open System: Oxygen Monitoring in a Flowing Gas 414
12.6.2.2 Closed Systems 417
12.6.2.3 Amperometric and Coulometric Sensors 418
12.6.3 HT- and IT-SOFC 418
12.6.4 Catalytic Membrane Reactors 423
References 423
13 Electrochemical Sensors: Fundamentals, Key Materials, and Applications 427
Jeffrey W. Fergus
13.1 Introduction 427
13.2 Operation Principles 428
13.2.1 Voltage-Based Sensors 428
13.2.1.1 Potentiometric Sensors: Equilibrium 428
13.2.1.2 Potentiometric: Nonequilibrium 431
13.2.2 Current-Based Sensors 434
13.2.2.1 Sensors Based on Impedance Measurements 435
13.2.2.2 Amperometric Sensors 435
13.3 Materials Challenges 437
13.3.1 Electrolytes 437
13.3.2 Electrodes 441
13.3.2.1 Reference Electrodes 441
13.3.2.2 Auxiliary Electrodes 444
13.3.2.3 Electrocatalytic Electrodes 452
13.3.2.4 Electrodes for Current-Based Sensors 459
13.4 Applications 462
13.4.1 Gaseous Medium 462
13.4.2 Molten Metals 464
13.5 Summary and Conclusions 467
References 468
Index 493
「Nielsen BookData」 より