Smooth ergodic theory for endomorphisms
Author(s)
Bibliographic Information
Smooth ergodic theory for endomorphisms
(Lecture notes in mathematics, 1978)
Springer, c2009
Available at 55 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. 271-274) and index
Description and Table of Contents
Description
Smooth ergodic theory of deterministic dynamical systems deals with the study of dynamical behaviors relevant to certain invariant measures under differentiable mappingsor ows. The relevance of invariantmeasures is that they describe the f- quencies of visits for an orbit and hence they give a probabilistic description of the evolution of a dynamical system. The fact that the system is differentiable allows one to use techniques from analysis and geometry. The study of transformationsand their long-termbehavior is ubiquitousin ma- ematics and the sciences. They arise not only in applications to the real world but also to diverse mathematical disciplines, including number theory, Lie groups, - gorithms, Riemannian geometry, etc. Hence smooth ergodic theory is the meeting ground of many different ideas in pure and applied mathematics. It has witnessed a great progress since the pioneering works of Sinai, Ruelle and Bowen on Axiom A diffeomorphisms and of Pesin on non-uniformly hyperbolic systems, and now it becomes a well-developed eld.
Table of Contents
- Preliminaries.- Margulis-Ruelle Inequality.- Expanding Maps.- Axiom A Endomorphisms.- Unstable and Stable Manifolds for Endomorphisms.- Pesin#x2019
- s Entropy Formula for Endomorphisms.- SRB Measures and Pesin#x2019
- s Entropy Formula for Endomorphisms.- Ergodic Property of Lyapunov Exponents.- Generalized Entropy Formula.- Exact Dimensionality of Hyperbolic Measures.
by "Nielsen BookData"